Ref No:

< SRI KRISHNA INSTITUTE OF TECHNOLOGY, BENGALURU>

COURSE PLAN

Academic Year 2019-20

Program:	B E – Mechanical Engineering
Semester :	3
Course Code:	18ME32
Course Title:	Mechanics of Materials
Credit / L-T-P:	4 / 3-2-0
Total Contact Hours:	50
Course Plan Author:	CHANDRAIAH M T

Academic Evaluation and Monitoring Cell

< #29, Hesaraghatta Main road, Chimney Hills, Chikkabanavara P.O., Bengaluru – 560090, Karnataka, INDIA Phone / Fax :+91 80 23721477 -STD- 080 23721315>

<http://www.skit.org.in: skit1princi@gmail.com: >

Table of Contents

18ME32: Mechanics of Materials	3
A. COURSE INFORMATION	3
1. Course Overview	
2. Course Content	
3. Course Material	
4. Course Prerequisites	
5. Content for Placement, Profession, HE and GATE	5
B. OBE PARAMETERS	5
1. Course Outcomes	5
2. Course Applications	6
3. Mapping And Justification	6
4. Articulation Matrix	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	9
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	10
Module - 1	10
Module – 2	12
E1. CIA EXAM – 1	
a. Model Question Paper - 1	15
b. Assignment -1	
D2. TEACHING PLAN - 2	
Module – 4	21
Module – 5	23
E2. CIA EXAM – 2	25
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN - 3	29
Module – 3	
E3. CIA EXAM – 3	31
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	36
1. University Model Question Paper	36
2. SEE Important Questions	
G. Content to Course Outcomes	40
1. TLPA Parameters	40
2. Concepts and Outcomes:	41

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

18ME32: Mechanics of Materials

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	ME
Semester:	3	Academic Year:	2019-20
Course Title:	Mechanics of Materials	Course Code:	18ME32
Credit / L-T-P:	4 / 3-2-0	SEE Duration:	180 Minutes
Total Contact Hours:	50 Hours	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	1 / Module
Course Plan Author:	Chandraiah M T	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target: 80 %	SEE Target:	65%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teachin	Identified Module	Blooms
ule		g Hours	Concepts	Learning
				Levels
1	Stress, strain, Hook's Law, Poisson's ratio and their relations		-Uni axial stresses	UnderstandL2
	mechanical properties of engineering materials including elastic		& strains	,
	constants and their relations, thermal stress and strains and their	•	- Deformation	Apply
	relation			L3,
	Determine stresses, strains and deformations in bars with varying			
	circular and rectangular cross-sections subjected to normal and			
2	temperature loads Plane stress and strain, major and minor principle stresses and their	10	Diovial strasses	L3
2	planes, maximum shear stress and their planes, Hoop's stress,		-Biaxial stresses - Hoop's & Radial	
	Longitudinal stress, Radial stress.	(5,5)	Stresses	L3
	Determine principal stress, maximum shear stress and their		51103503	Apply,
	orientations using analytical method and Mohr' circle method and			· • • • • • • • • • • • • • • • • • • •
	dimensions of thick and thin cylinder and also stress distribution in			
	thick and thin cylinders.			
4	Circular solid and hallow shafts, Torsional moment of resistance,	10	- Torque & Twist -	L3
	Power transmission of straight and stepped shafts	(5,5)	Theories of failure	Apply,
	Maximum Principal Stress theory, Maximum shear stress theory			L3
				Apply,
5	Buckling and stability, Critical load, Columns with pinned ends,		-Crippling load	L3
	Columns with other support conditions and also dimensions of elastic	(5,5)	-Strain energy	Apply,
	stability of columns using Rankin's and Euler's theory Castigliano's theorem I and II, Load deformation diagram, Strain			L3
	energy due to normal stresses, Shear stresses, Modulus of resilience,			Apply,
	Strain energy due to bending and torsion			
3	Draw SFD and BMD for different beams including cantilever beams,	10	- Shear force &	L3
0	simply supported beams and overhanging beams subjected to UDL,		Bending Moment	Apply,
	UVL, Point loads and couples. And also bending stress, shear stress		- Bending stress	
	and its distribution in beams of circular, rectangular, symmetrical I		distribution	Apply,
	and T sections subjected to point loads and UDL			
	Types of beams, loads, supports, relation between load, force and			
	moment, Pure bending, Curvature of a beam, Longitudinal strains in			
	beams, Normal stresses in Beams with rectangular, circular, 'I' and 'T'	7		
	cross sections	50		
-	Total	50	-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C). 1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 - 30 minutes 2. Design: Simulation and design tools used – software tools used ; Free / open source

0.100000			
Module	Details	Chapters	Availability
S	Dent has her (D'Als, Assaling Filleling, Denklich en Marge)	in book	
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
	Strength of Material, James M Gere, Barry J Goodno, Indian Edition, Cengage Learning, 2009	, -,	In Lib / In Dept
5	Learning, 2009	5,7,9,11,	
		13,14	
	Strength of Materials, R Subramanian, Oxford. 2005	1, 2, 3,	In Lib/ In
5		4,	Dept
		5,8,9,11	
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1,2,3,4,	Strength of Materials, SS Rattan, Second Edition, McGraw Hill, 2011.	1, 2, 4,	In Lib
5		5,6,8,11,	
		12,	
1,2,3,4,	Mechanics of Materials, Ferdinand Beer and russell Johnston, Tata McGraw Hill.		In Lib
5	2003	5,7,9,10,	
		12	
С	Concept Videos or Simulation for Understanding	-	-
C1	https://www.youtube.com/watch?v=cMdVzMRWZTk -17.23 Mins		
C2	https://www.youtube.com/watch?v=SBiU3M7Dl6s -3.14 Mins		
C3	https://www.youtube.com/watch?v=C207JS-HM4Q -8.27 Mins		
C4	https://www.youtube.com/watch?v=220735-IIII4Q -8.27 Wins https://www.youtube.com/watch?v=Ja03J1RQ3Hw -8.38 Mins		
C4 C5			
C6	https://www.youtube.com/watch?v=ICDZ5uLGrI4 -5.26 Mins		
	https://www.youtube.com/watch?v=qbv2rOEMyiA -13.36 Mins		
C7	https://www.youtube.com/watch?v=Fzjd-6hzVko -7.27 Mins		
C8	https://www.youtube.com/watch?v=WB_FR_1_LU -22.22 Mins		
C9	https://www.youtube.com/watch?v=UahfUvcS240 -16.42 Mins		
	https://www.youtube.com/watch?v=xGPGrS-k6eo -10.31 Mins		
D	Software Tools for Design	-	-
1	https://www.youtube.com/watch?v=bMZaiTsMo-U -3.58 Mins		
E	Recent Developments for Research	-	-
1	https://www.youtube.com/watch?v=J0ZMi83oUjk -4.38 Mins		
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	https://www.youtube.com/watch?v=I11NUIKj8P8 -10.38 Mins		

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Studer	Students must have learnt the following Courses / Topics with described Content									
Modu	Course	Course Name	Topic / Description	Sem	Remarks	Blooms				
les	Code					Level				
1	18CIV13/	Elements of Civil	1. Knowledge force, Moments	1/2		L3				
	23	Engineering								

Students must have learnt the following Courses / Topics with described Content . . .

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Modu		Topic / Descr	ription		Area	Remarks	Blooms
les							Level
	Advanced nptel.ac.in/cou	strength arses/1121010	of 095/	materials	Higher Study, Gate	Gap	Apply L3
-							

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Modu	Course	Course Outcome	Teach.	Concept	Instr	Assessment	Blooms'
les	Code.#	At the end of the course, student	Hours	· ·	Method	Method	Level
		should be able to					
1	18ME32.1	Understand simple, thermal stresses &	04	Unidirection	Chalk	Assignmen	L2
		strains and their relations		al Stresses &	and	t, Unit Test	Understand
				Strain	Board	& CIE	
1	18ME32.2	Determine the stress, strain and	06	Deformation	Chalk	Assignmen	L3
		deformation in bars with varying cross			and	t, Unit Test	Apply
		section and temperature change			Board	& CIE	
2		Determine principal stresses and planes	05	Biaxial	Chalk	Assignmen	L3
		using analytical and graphical method.		Stresses	and	t, Unit Test	Apply
					Board	& CIE	
2		Determine stress distribution in thick	05	Hoop's &	Chalk	Assignmen	L3
		and thin cylinder		Radial Stress	and	t, Unit Test	Apply
					Board	& CIE	
3		Determine, torsional strength, rigidity,	05	Torque &	Chalk	Assignmen	L2
		flexibility & dimensions of shaft		Twist	and	t, Unit Test	Apply
					Board	& CIE	
3		Determine dimensions of bars, beams &		Theories of	Chalk	Assignmen	L3
		rods using Maximum principal &		failure	and	t, Unit Test	Apply
_		Maximum Shear stress theory of failure	05		Board	& CIE	1.2
4		Determine elastic stability of columns	05	Crippling	Chalk	Assignmen	L3
		using Rankine's & Euler's theory		load	and	t, Unit Test	Apply
4	101/022.0		07	G	Board	& CIE	1.2
4		Determine dimensions of bars, beams &	05	Strain	Chalk	Assignmen	L3
		rods using strain energy methods		energy methods	and Talk	t & CIE	Apply
5	18ME32.9	Drow shaar fares discreme & Danding	05	Shear force,	Chalk	Assignmon	L3
5		Draw shear force diagram & Bending moment diagram for a Simply supported		1		Assignmen t, Unit Test	
				& Bending	and Board	& CIE	Apply
		beam & cantilever beam with point load, UDL & UVL		moment	Боага	& CIE	
5	18ME32.10	Determine the bending stress	05	Bending	Chalk	Assignmen	L3
		distribution of rectangular, symmetrical		stress	and	t, Unit Test	Apply
		I &T section		distribution	Board	& CIE	
-	-	Total	50	-	-	-	L2-L3

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learning's to . . .

Modu	Application Area	CO	Level
les	Compiled from Module Applications.		
1	Stress and strain to find an application in analyzing as structure	CO1	L2

1	Structural analysis	CO2	L3
2	Combined loading in structural and machine parts	CO3	L3
2	Pressure vessels	CO4	L3
4	Design of shaft	CO5	L3
4	Failure theories analysis	CO6	L3
5	Design of columns	CO7	L3
5	Strain energy stored in the materials	CO8	L3
3	Design of Bridges,	CO9	L3
3	Structural analysis in the field of construction of bridges, etc.	CO10	L3

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

	nprisn				1-
Mod ules	Мар	ping	Mapping Level	Justification for each CO-PO pair	Lev el
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1	3	^{(Engineering Knowledge:' - <u>Acquisition of Engineering Knowledge</u> of <u>Stress and</u> <u>strain</u> is essential to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.}	L2
1	CO1	PO2	2	Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of relation between stress and strain to accomplish <u>solutions to complex engineering</u> <u>problems</u> in Mechanical Engineering.	L3
1	CO2	PO1	3	^c Engineering Knowledge: ² - <u>Acquisition of Engineering Knowledge</u> of <u>Deformation</u> <u>of materials</u> is essential to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.	
1	CO2	PO2	2	Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of <u>deformation of different section of materials</u> to accomplish <u>solutions to complex</u> <u>engineering problems</u> in Mechanical Engineering.	L3
2	CO3	PO1	3	^c Engineering Knowledge: ² - <u>Acquisition of Engineering Knowledge</u> of <u>Compound</u> <u>stresses</u> is essential to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.	L3
2	CO3	PO2	2	Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of <u>Biaxial loads</u> to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.	L3
2	CO4	PO1	3	^c Engineering Knowledge: ² - <u>Acquisition of Engineering Knowledge</u> of <u>Hoop Stress</u> and radial stress is essential to accomplish in <u>stress distribution thin and thick</u> <u>cylinder</u>	L3
2	CO4	PO2	2	Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of <u>Hoops and radial load</u> to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.	L3
3	CO5	PO1	3	'Engineering Knowledge:' - <u>Acquisition of Engineering Knowledge</u> of <u>Torque and</u> <u>twist</u> is essential to accomplish <u>dimensions of solid and hollow shafts</u> in Mechanical Engineering.	L3
3	CO5	PO2	2	Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of <u>torque and twist</u> to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.	L3
3	CO6	PO1	3	^c Engineering Knowledge: ² - <u>Acquisition of Engineering Knowledge</u> of <u>Theories of failure</u> is essential to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.	L3
3	CO6	PO2	2	Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of <u>theories of failure</u> to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.	L3
4	CO7	PO1	3	'Engineering Knowledge:' - <u>Acquisition of Engineering Knowledge</u> of crippling <u>load</u> is essential to accomplish different end condition of columns.	L3
4	CO7	PO2	2	Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of Crippling load to accomplish different end condition of columns.	L3
4	CO8	PO1	3	'Engineering Knowledge:' - <u>Acquisition of Engineering Knowledge</u> of <u>Strain energy</u> is essential to accomplish <u>solutions to</u> find the energy absorption in different load condition	L3

4	CO8	PO2	2	Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of <u>Strain energy</u> to accomplish <u>solutions to</u> find the energy absorption in different load condition	L3
5	CO9	PO1	3	^c Engineering Knowledge: ² - <u>Acquisition of Engineering Knowledge</u> of <u>SFD and</u> <u>BMD</u> is essential to accomplish <u>solutions to</u> beams with different load condition	L3
5	CO9	PO2	2	Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of <u>SFD</u> and <u>BMD</u> to accomplish <u>solutions to</u> beams with different load condition	L3
5	CO10	PO1	3	^c Engineering Knowledge: ² - <u>Acquisition of Engineering Knowledge</u> of <u>Bending</u> <u>stress</u> is essential to accomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.	L3
5	CO10	PO2	2	Problem Analysis': <u>Analyzing problems</u> require knowledge / understanding of bending stress distribution occomplish <u>solutions to complex engineering problems</u> in Mechanical Engineering.	L3

4. Articulation Matrix

CO – PO Mapping with mapping	level for each CO-PO pair	with course average attainment.
ee renapping min inapping		, with course a crage attainment

CO = I	Owapping		Course Outcomes Program Outcomes															
-	-	Course Outcomes		1		1									1	1		-
Modu	CO.#	At the end of the course student	PO	PO														Lev
les		should be able to	1	2	3	4	5	6	7	8	9	10	11	12	01	02	O3	
1	18ME32.1	Understand simple, thermal stresses	3															L2
		& strains and their relations																
1		Determine the stress, strain and		2														L3
		deformation in bars with varying																1
		cross section and temperature change																
2		Determine principal stresses and		2														L3
		planes using analytical and graphical																
		method.																
2		Determine stress distribution in thick	3	2														L3
		and thin cylinder																
3	18ME32.5			2														L3
		rigidity, flexibility & dimensions of																
		shaft																
3	18ME32.6	Determine dimensions of bars, beams		2														L3
		& rods using Maximum principal &																
		Maximum Shear stress theory of																
		failure	_	_														
4		Determine elastic stability of columns	3	2														L3
		using Rankine's & Euler's theory																I.
1	1911222.9	Determine dimensions of bars, beams	3	2														
4		& rods using strain energy methods	3	2														L3
5		Draw shear force diagram & Bending	2	2														L3
3	16WIE52.9	moment diagram for a Simply		2														LS
		supported beam & cantilever beam																
		with point load, UDL & UVL																
5	18ME32.10		3	2														L3
5		distribution of circular, rectangular		2														L5
		symmetrical I &T section																
-		Average attainment (1, 2, or 3)	3	2														-
_		1.Engineering Knowledge; 2.Problem	-		sis	ת 3	esia	n /	De	velo	nm4	nt i	of S	olut	ion	s· 4	Cor	duct
	10,150	Investigations of Complex Problem																
		7.Environment and Sustainability;																
		11.Project Management and Finance																
		Base Management; S3.Web Design	,	. 5		0			0,		.,			0		.0,		

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Modu	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
les					
1	Advanced mechanics	Seminar	2 nd Nov 2019	Dr. M H Annaiah	PO1

		Prof. And Vice Principal SCE, Bengaluru	

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Modu	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping
les						
1	Advances in	Placement,	Presentation	11 th Nov 2018	Mr. Gowtham	PO9
	Construction of beams	GATE,				
	and columns	Higher				
		Study,				
		Entrepreneur				
		ship.				

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.	Ĺ	No. o	of quest		СО	Levels		
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Stresses and Strain	10	2	-	-	1	1	2	CO1, CO2	L2, L3
2	Analysis of Stress and Strain and	10	2		-	1	1	2	CO3, CO4	L3
	Cylinders									
4	Torsion and Theories of Failure	10	-	2	-	1	1	2	CO5, CO6	L3
5	Columns and strain Energy	10	-	2	-	1	1	2	CO7, C08	L3
3	Shear Force and Bending Moment and	10	-	-	4	1	1	2	CO9, CO10	L3
	stresses in beams									
-	Total	50	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	CO	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO1, CO2, CO3,Co4	L2,L3,L3,L3
4, 5	CIA Exam – 2	30	CO5, CO6, CO7, C08	L3,L3,L3,L3
3	CIA Exam – 3	30	CO9, CO10	L3,L3
1, 2	Assignment - 1	10	CO1, CO2, CO3,Co4	L2,L3,L3,L3
18ME	32		Copyright ©2017. cAAS. A	ll rights reserved.

COURSE PLAN - CAY 2019-20

4, 5	Assignment - 2	10	CO5, CO6, CO7, C08	L3,L3,L3,L3
3	Assignment - 3	10	CO9, CO10	L3,L3
	Seminar - 1		-	-
4, 5	Seminar - 2		-	-
3	Seminar - 3		-	-
1, 2	Quiz - 1		-	-
	Quiz - 2		-	-
3	Quiz - 3		-	-
1 - 5	Other Activities – Mini Project	-	-	-
	Final CIA Marks	40	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Stress & Strain	Appr	10 Hrs
		Time:	
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Understand simple, thermal stresses & strains and their relations	CO1	L2
2	Determine the stress, strain and deformation in bars with varying cross section and	CO2	L3
	temperature change		
b	Course Schedule	_	_
	Portion covered per hour	-	_
1	Introduction to Stress & Strain, Hooke's law	C01	L2
2	Calculation of stresses in straight bar & stepped bar	C01	L2 L3
3	Calculation of stresses in tapered sections	C01	L3
4	Composite sections & problems	C01	L3
5	Stresses due to temperature changes	C01	L3
6	Shear stress & strain,	C01	L2
7	Lateral strain, Poisson's ratio, Generalized Hooke's law	C02	L2
8	Bulk modulus, relation between elastic constants	C02	L2
9	Problems	C02	L3
10	Problems	C02	L3
с	Application Areas	-	
-	Students should be able employ / apply the Module learning's to	_	_
1	Stress and strain to find an application in analyzing as structure	CO1	L2
2	Structural analysis	CO2	L2 L3
			_
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Define I) Hooke's law (ii) Poisson's ratio (iii) Volumetric strain (iv) Modulus of rigidity v)	CO1	L1

	COURSE PLAN - CAY 2019-20		
	Normal stress vi) Shear stress vii) Factor of safety viii) Bulk Modulus ix) Modulus of elasticity x) Elasticity xi) plasticity xii) Resilience xiii) Toughness xvi) stiffness,		
2	The tensile test was conducted on mild steel bar. The following data was obtained from the test, Diameter of steel bar = 16 mm, Load at proportionality limit = 72 KN, Load at failure = 80 KN, diameter of the rod at failure = 12mm, gauge length of the bar = 80 mm, extension at load of 60 KN = 0.115 mm, Final gauge length of bar = 104 mm. Determine (I) Young's modulus (ii) Proportionality limit (iii) Percentage elongation (iv) Percentage decrease in area (v) Breaking stress.	CO1	L3
3	Draw and explain stress-strain diagram of a mild steel specimen subjected to tension test. Mark the salient points on it.	CO1	L2
4	A circular rod of 100mm diameter and 500 mm length is subjected to a tensile load of 1000 KN. Determine the I) Modulus of rigidity ii) Bulk modulus iii) Change in volume. Take Poisson's ratio = 0.30 and E = 200 GPa.	CO2	L3
5	Derive a relation between modulus of elasticity and bulk modulus.	CO2	L2
6	A bar of brass 25 mm diameter is enclosed in a steel tube of 50 mm external diameter and 25 mm internal diameter. The bar and the tube fastened at the ends and are 1.5m long. Find the stresses in the two materials when the temperature raises from 30° C to 80° C	CO2	L3
7	Derive an expression for total extension of tapering circular bar cross section of diameter 'D' and 'd' when subjected to an axial pull of load P	CO1	L2
8	Derive an expression for extension of bar due to its self weight only having area A and length L suspended from its top.	CO1	L3
9	Derive an expression for volumetric strain of rectangular bar subjected to normal stress along its axis.	CO1	L2
10	Derive the relationship between modulus of rigidity and Young's modulus of elasticity and define elastic constants.	CO1	L2
11	The modulus of rigidity for a material is 51 GPa. A 10 mm diameter rod of the material was subjected to an axial load of 10KN and the change in diameter was observed to be 3 x 10^{-3} mm. Calculate the Poisson's ratio and the modulus of elasticity.	CO2	L3
12	A concrete column is of square section with 250 mm size and is reinforced with 08 steel bars of 16 mm diameter. The member supports an axial load of 270 KN. Evaluate the stresses in steel and concrete assuming a modular ratio as 18	CO2	L3
13	Derive an expression for the deformation of tapering circular bar subjected to axial force.	CO1	L2
14	When a bar of 25 mm diameter is subjected to pull of 61KN, the extension on a 50 mm gauge length is 0.1 mm and decrease in diameter is 0.013 mm. Calculate the values of elastic constants E, G, K and μ .	CO2	L3
15	A compound bar is made up of a central aluminium plate 24mm wide and 6mm thick to which steel plates of 24mm wide and 9mm thick are connected rigidly on each side. The length of compound bar at temperature 20 °C is 100mm. If the temperature of the whole assembly is raised by 60°C, determine the stress in each of the material. If at the new temperature a compressive load of 20kN is applied to the composite bar. What are the final stresses in steel and aluminum? Given $Es = 2 \times 10^5 \text{ N/mm}^2$, $E_A = -2 \times 10^5 \text{ N/mm}^2$, $a_s = 12 \times 10^{-6} \text{ °C}$ and $a_A = 23 \times 10^{-6} \text{ °C}$.	CO2	L3
16	A composite bar is rigidly fitted at the supports A and B as shown in Fig. Determine the reactions at the supports when temperature rises by 20°. Take EA = 70 GPa, Es = 200 CPA, $a_A = 11 \times 10^{-6}$ °C and $a_s = 12 \times 10^{-61}$ °C	CO2	L3
e	Experiences	-	
1		CO1	L2
2			
3			
4		CO2	L2

Module-2

Title:	Analysis of Stress and Strain and Cylinders	Appr Time:	10 Hrs
а	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Determine principal stresses and planes using analytical and graphical method.	CO3	L4
2	Determine stress distribution In thick and thin cylinder	CO4	L3
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
11	Plane stress, stresses on inclined planes	CO3	L2
12	Principal stresses and maximum shear stress principal angles	CO3	L2
13	Shear stresses on principal planes, Maximum shear stress	CO3	L3
14	Mohr's circle for plane stress conditions.	CO3	L3
15	Problems on Mohr's Circle	CO3	L3
16	Thin Cylinder Hoop's stress Maximum shear stress	CO4	L2
17	Circumferential and longitudinal strains	CO4	L2
18	Problems on thin cylinder	CO4	L3
19	Thick cylinders Lames equation	CO4	L2
20	Problems on thick cylinder	CO4	L3
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Combined loading in structural and machine parts	CO3	L3
2	Pressure vessels	CO4	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
17	A tension member is formed by connecting two wooden scantling each 75mm x 150 mm	CO3	L3
	at their ends, which are cut at an angle of 60° as shown in Fig.15. The member is		
	subjected to a pull F. Find the safe value of F, if the permissible normal and shear stress in		
10	the glue are 1.5N/mm ² and 1 N/mm ² respectively.	~~ /	
18	A point in a strained material is subjected to a tensile stress of 500 N/mm ² and 300 N/mm ²	CO4	L3
	in two mutual perpendicular planes. Calculate the normal, tangential, resultant stresses		
	and its obliquity on a plane making an angle of 30° with the axis of the second stress. Also		
10	find the maximum shear stress.	CO2	1.2
19	A point in a plate grinder is subjected to a horizontal tensile stress of 100 N/mm ² and vertical shear stress of 60 N/mm ² . Find the magnitude of principal stresses and its		L3
	location.		
20	The state of stress in a two dimensionally stressed body is as shown in Fig. Determine (I)	CO3	L2
20	Normal stress on maximum shear stress on plane AC. ii) Principal stresses, principal	003	L2
	planes and maximum shear stress and its location iii) Normal stress on maximum shear		
	stress plane. iv) Verify answers by Mohr's circle method.		
	succes plane. (v) verify answers by wont's circle include.		I

29	For a thin cylinder subjected to internal pressure 'p' prove that the circumferential stress = $\frac{pd}{2t}$ and longitudinal stress = $\frac{pd}{4t}$ where 'd' is internal diameter and 't' is thickness of wall.	CO4	L2
30	The maximum stress permitted in a thick cylinder radii 200 mm and 300 mm is 16 N/mm^2 . If the internal pressure is 12 N/mm^2 , what external pressure can be applied? Plot curves showing the variations of hoop and radial stresses through the material.	CO4	L3
31	A thick metallic cylindrical shell is 150 mm internal diameter is required to with stand an internal pressure of 8 MPa. Find the necessary thickness of shell if permissible tensile stress in the section is 20 MPa.	CO4	L3
32	A Cylindrical pressure vessel has inner and outer diameter 340 mm and 440 mm respectively. Taking allowable stress for the material of the cylinder as 50 N/mm ² , determine (I) Maximum value of external pressure that can be applied (ii) Circumferential stress induced in the outer surface.	CO4	L3
33	A Cylindrical pressure vessel of 250 mm inner radius Is subjected to internal pressure of 10 N/mm ² allowable stress for the material of the cylinder is 40 N/mm ² . Determine (I) Wall thickness of cylinder (ii) percentage error involved when the thickness is calculated based on thin cylinder.	CO4	L3
34	A thin cylindrical shell of 1200 mm diameter, 15 mm thick and 6m long is subjected to internal fluid pressure of 2.5 N/mm ² E = $2x10^5$ N/mm ² , $\frac{1}{m}$ =0.3. Calculate (I) Change in diameter, (ii) change in length, (iii) change in volume	CO4	L3
35	A cylindrical pipe of diameter 2m and wall thickness 20 mm is subjected to an internal fluid pressure of 1.5 N/mm^2 , Determine (I) Longitudinal stress and (ii) Circumferential stress developed in the pipe material.	CO4	L3
36	A thin cylindrical shell 2m long has 200 mm internal diameter and thickness of metal 10 mm. It is filled completely with a fluid at atmospheric pressure. If an additional 25000 mm ³ fluid is pumped in find the pressure developed and hoop stress developed. Also find the change in diameter and length. $E = 2x10^5 \text{ N/mm}^2$ and $\frac{1}{m} = 0.3$	CO4	L3
	E-monton oor		
e	Experiences	- CO3	- L2
2		005	L2
3			
4		CO4	L2
5			

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs C	Code:	18ME32	Sem:	3	Marks:	30	Time:	90	minutes		
Cour	se:	Mechanics of	of Materials								
-	-				carry equal ma				Marks	СО	Level
1	а	Derive the Modulus	relationship	between	young's Modu	ılus, Bulk	Modulus, an	d Shear	6	CO2	L2
	b	from the test , Load at fail bar = 80 mm 104 mm. De	t, Diameter lure = 80 KM n, extension etermine (I)	of steel bar N, diameter at load of Young's n	mild steel bar. = 16 mm , Load of the rod at fai 60 KN = 0.115 nodulus (ii) Pro in area (v) Brea	l at proport ilure = 12m mm, Final portionality	ionality limit im, gauge leng gauge length imit (iii) Pe	= 72 KN of the of bar =		CO1	L3
2	а				ension of taper d to an axial pul		r bar cross se	ection of	5	CO1	L2
	b	steel bars o	f 16 mm d	iameter. T	tion with 250 n the member supported assuming	ports an a	xial load of 2		10	CO2	L3
3	a	perpendicula shear stress	ar planes at on the plane termine (I)	a certain . The great Magnitud	nsile and 90 N point in a body est principal stre e of shearing int.	They are are as at the po	also accomp oint due to the	anied by se is 150		CO3	L3
	b		pression for	volumetri	c strain in case of	of thin cylin	ndrical shell of	f internal	5	CO4	L2
4	a	planes at rig stress of 32 Determine Maximum si	ght angles to MPa cw o (I) Maximu hear stress a	b each othe on the plan on and m ond specify	naterial the value er are 80 MPa, ne carrying 80 inimum stresse its plane. (iii) 1 by Mohr's circle	both tensil MPa stress es and loc Normal stress	e and there is ses across the cate their pla	a shear planes. nes. (ii)		CO3	L3
	b	A Cylindric pressure of 1	al pressure 10 N/mm ² a I) Wall thic	vessel of llowable st kness of c	250 mm inner ress for the mate ylinder (ii) per	radius Is radius Is	cylinder is 40	N/mm^2 .		CO4	L3

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions								
Crs Code: 18ME32 Sem: 3 Marks: 10 Time: 90 – 120 minutes									
Course:	Mechanics	of Materials			Module : 1, 2				
Note: Each s	student to an	swer 2-3 assig	gnments. Each	n assignment c	arries equal n	nark.			
SNoUSNAssignment DescriptionMarksCOLeve								Level	

1	Define I) Hooke's law (ii) Poisson's ratio (iii) Volumetric strain (iv) Modulus of rigidity v) Normal stress vi) Shear stress vii) Factor of safety viii) Bulk Modulus ix) Modulus of elasticity x) Elasticity xi) plasticity xii) Resilience xiii) Toughness xvi) stiffness,	10	CO1	L1
2	The tensile test was conducted on mild steel bar. The following data was obtained from the test, Diameter of steel bar = 16 mm, Load at proportionality limit = 72 KN, Load at failure = 80 KN, diameter of the rod at failure = 12mm, gauge length of the bar = 80 mm, extension at load of 60 KN = 0.115 mm, Final gauge length of bar = 104 mm. Determine (I) Young's modulus (ii) Proportionality limit (iii) Percentage elongation (iv) Percentage decrease in area (v) Breaking stress.	10	CO1	L3
3	Draw and explain stress-strain diagram of a mild steel specimen subjected to tension test. Mark the salient points on it.	10	CO1	L2
4	A circular rod of 100mm diameter and 500 mm length is subjected to a tensile load of 1000 KN. Determine the I) Modulus of rigidity ii) Bulk modulus iii) Change in volume. Take Poisson's ratio = 0.30 and E = 200 GPa.	10	CO2	L3
5	Derive a relation between modulus of elasticity and bulk modulus.	10	CO2	L2
6	A bar of brass 25 mm diameter is enclosed in a steel tube of 50 mm external diameter and 25 mm internal diameter. The bar and the tube fastened at the ends and are 1.5m long. Find the stresses in the two materials when the temperature raises from 30° C to 80° C	10	CO2	L3
7	Derive an expression for total extension of tapering circular bar cross section of diameter 'D' and 'd' when subjected to an axial pull of load P	10	CO1	L2
8	Derive an expression for extension of bar due to its self weight only having area A and length L suspended from its top.	10	CO1	L3
9	Derive an expression for volumetric strain of rectangular bar subjected to normal stress along its axis.	10	CO1	L2
10	Derive the relationship between modulus of rigidity and Young's modulus of elasticity and define elastic constants.	10	CO1	L2
11	The modulus of rigidity for a material is 51 GPa. A 10 mm diameter rod of the material was subjected to an axial load of 10KN and the change in diameter was observed to be 3 x 10^{-3} mm. Calculate the Poisson's ratio and the modulus of elasticity.	10	CO2	L3
12	A concrete column is of square section with 250 mm size and is reinforced with 08 steel bars of 16 mm diameter. The member supports an axial load of 270 KN. Evaluate the stresses in steel and concrete assuming a modular ratio as 18	10	CO2	L3
13	Derive an expression for the deformation of tapering circular bar subjected to axial force.	10	CO1	L2
14	When a bar of 25 mm diameter is subjected to pull of 61KN, the extension on a 50 mm gauge length is 0.1 mm and decrease in diameter is 0.013 mm. Calculate the values of elastic constants E, G, K and μ .	10	CO2	L3
15	Derive the relationship between Young's Modulus and Shear Modulus	10	CO2	L2
16	A tension member is formed by connecting two wooden scantling each 75mm x 150 mm at their ends, which are cut at an angle of 60° as shown in Fig.15. The member is subjected to a pull F. Find the safe value of F, if the permissible normal and shear stress in the glue are 1.5N/mm ² and 1 N/mm ² respectively.	10	CO3	L3
17	A point in a strained material is subjected to a tensile stress of 500 N/mm ² and 300 N/mm ² in two mutual perpendicular planes. Calculate the normal, tangential, resultant stresses and its obliquity on a plane making an angle of 30° with the axis of the second stress. Also find the maximum shear stress.	10	CO4	L3
18	A point in a plate grinder is subjected to a horizontal tensile stress of 100 N/mm ² and vertical shear stress of 60 N/mm ² . Find the magnitude of principal stresses and its location.	10	CO3	L3
19	The state of stress in a two dimensionally stressed body is as shown in Fig. Determine (I) Normal stress on maximum shear stress on plane	10	CO3	L2
	AC. ii) Principal stresses, principal planes and maximum shear stress Copyright ©2017, cAAS, A			

	COURSE PLAN - CAY 2019-20			
27	Derive Lame's equation for radial and hoop stress in case of thick cylinders.	10	CO4	L2
28	For a thin cylinder subjected to internal pressure 'p' prove that the circumferential stress = $\frac{pd}{2t}$ and longitudinal stress = $\frac{pd}{4t}$ where 'd' is internal diameter and 't' is thickness of wall.	10	CO4	L2
29	The maximum stress permitted in a thick cylinder radii 200 mm and 300 mm is 16 N/mm ² . If the internal pressure is 12 N/mm ² , what external pressure can be applied? Plot curves showing the variations of hoop and radial stresses through the material.	10	CO4	L3
30	A thick metallic cylindrical shell is 150 mm internal diameter is required to with stand an internal pressure of 8 MPa. Find the necessary thickness of shell if permissible tensile stress in the section is 20 MPa.	10	CO4	L3
31	A Cylindrical pressure vessel has inner and outer diameter 340 mm and 440 mm respectively. Taking allowable stress for the material of the cylinder as 50 N/mm ² , determine (I) Maximum value of external pressure that can be applied (ii) Circumferential stress induced in the outer surface.	10	CO4	L3
32	A Cylindrical pressure vessel of 250 mm inner radius Is subjected to internal pressure of 10 N/mm ² allowable stress for the material of the cylinder is 40 N/mm ² . Determine (I) Wall thickness of cylinder (ii) percentage error involved when the thickness is calculated based on thin cylinder.	10	CO4	L3
33	A thin cylindrical shell of 1200 mm diameter, 15 mm thick and 6m long is subjected to internal fluid pressure of 2.5 N/mm ² E = $2x10^{5}$ N/mm ² , $\frac{1}{m}$ =0.3. Calculate (I) Change in diameter, (ii) change in length, (iii) change in volume	10	CO4	L3
34	A cylindrical pipe of diameter 2m and wall thickness 20 mm is subjected to an internal fluid pressure of 1.5 N/mm ² , Determine (I) Longitudinal stress and (ii) Circumferential stress developed in the pipe material.	10	CO4	L3
35	A thin cylindrical shell 2m long has 200 mm internal diameter and thickness of metal 10 mm. It is filled completely with a fluid at atmospheric pressure. If an additional 25000 mm ³ fluid is pumped in find the pressure developed and hoop stress developed. Also find the change in diameter and length. $E = 2x10^5 \text{ N/mm}^2$ and $\frac{1}{m} = 0.3$	10	CO4	L3
36	A room temperature the gap between bar A and bar B shown in Fig is 0.25 mm. What are the stresses induced in the bars , if temperature rise is 35°C. Given, $A_A = 1000 \text{ mm}^2$; $A_B = 800 \text{ mm}^2$; $E_A = 200\text{GPa}$; $E_B = 100$ GPa; $\alpha_a = 12 \times 10^{-6} \text{ per °C}$; $\alpha_b = 23 \times 10^{-6} \text{ per °C}$; $L_A = 400 \text{ mm}$; $L_B = 300$ mm;	10	CO2	L3
37	A composite bar shown in Fig. Is 0.25 mm short of distance between the rigid supports at room temperature. What is the maximum temperature rise which will not produce stresses in the bar? Find stresses induced when temperature rise is 400°C. Given $\alpha_s = 12 \times 10^{-6}$ per °C; $\alpha_c = 17.5 \times 10^{-6}$ per °C; $E_s = 2 \times 10^5$ N/mm ² ; $E_c = 1.2 \times 10^5$ N/mm ² ; $A_s:A_c = 4:3$	10	CO2	L3

COURSE PLAN - CAY 2019-20

$\frac{A}{400 \text{ mm}} = \frac{0.25 \text{ mm}}{B}$ $\frac{B}{500 \text{ mm}}$ $\frac{B}{500 \text$		CO2	L3
39 A bar of brass 25mm diameter is enclosed in a steel tube of 50mm external diameter and 25mm internal diameter. The bar and the tube fastened at the ends and are 1.5m long. Find the stresses in the two materials when the temperature raises from 30°C to 80°C. Take : Estee] = 200 GPa 0 — ; Ebrass = 100GPa, α_s 11.6 x 10-6/°C : α_b . 18.7 x 10 ⁻⁶ /°C.		CO2	L3
40 A Composite bar made up of aluminium and steel is held between two supports as shown in Fig. The bars are stress free at temperature 42°C. What will be the stresses in the two bars with the temperature drops to 24°C if (a) The supports are unyielding (b) The support comes nearer to each other by 0.1 mm. The cross sectional area of steel bar is 160 mm ² and that of aluminium bar is 240 mm ² . $\alpha_A = 24 \times 10^{-6}$ per °C; $\alpha_s = 12 \times 10^{-6}$ per °C; $\alpha_s = 0.7 \times 10^{5}$ N/mm ² ; $E_s = 2 \times 10^{5}$ N/mm ²		CO2	L3
41 A compound bar is made up of a central steel plate 50mm wide and 10mm thick to which copper plates 50 mm wide and 5 mm thick are connected rigidly on each side. The length of compound bar at room temperature is 1000 mm. If the temperature is raised by 100°C, determine the stress in each material and the change in length of the compound bar. n $\alpha_s = 12 \times 10^6$ per °C; $\alpha_c = 18 \times 10^{-6}$ per °C; $E_s = 2 \times 10^5$ N/mm ² ; $E_c = 1 \times 10^5$ N/mm ²		CO2	L3
42 Determine the change in length, width and thickness of a steel bar which is 4 m long, 30 mm wide and 20 mm thick and is subjected to an axial pull of 30 KN in the direction of length. $E = 2 \times 10^5 \text{ N/mm}^2$ and poisson's ratio = 0.3. Also determine the volumetric strain, change in volume and final volume of the given bar		CO2	L3
43 A steel rod of 4 m long 20 mm diameter is subjected to an xial tensile load of 40 KN. Determine the change in length, diameter and volume of rod . $E = 2 \times 10^5 \text{ N/mm}^2$ and poisson's ratio = 0.25		CO2	L3
44 A metallic bar 250 mm x 80 mm x 30mm is subjected to a force of 20 KN (Tensile), 30 KN (tensile) and 15 KN (tensile) as shown in Fig. Determine the change in volume of the block. Take $E = 2 \times 10^5 \text{ N/mm}^2$ and poisson's ratio = 0.25		CO2	L3
45 A bar 600 mm long is having square section of size 50 mm x 50 mm. If the bar is subjected to an axial load of 120 KN and lateral compression load of 600 KN on faces of size 50 mm x 600 mm, find the change in size and volume. $E = 2 \times 10^5 \text{ N/mm}^2$ and poisson's ratio = 0.3		CO2	L3
46 A bar of 25 mm diameter is tightly fitted into a tube. Find the stresses in the bar and changes in its volume due to a compressive force of 60 KN in the bar if the tube restrain 50 percent of expansion in diameter. Take length of bar = 400 mm, $E = 2 \times 10^5 \text{ N/mm}^2$ and poisson's ratio = 0.3. also find the change in length and diameter of the bar.		CO2	L3
47 A mild steel bar of 200 mm long, 60 mm width and 80 mm depth is	10	CO2	L3

	find the alteration or change in length. $E = 2 \times 10^5 \text{ N/mm}^2$ and poisson's ratio = 0.25			
48	A bar of rectangular cross section 20 mm x 50 mm is 400 mm long and subjected to an axial tensile load of 80 KN. If the modulus of elasticity and modulus of rigidity of the material of bar are $1 \times 10^5 \text{ N/mm}^2$ and 0.4 x 10^5 N/mm^2 , determine Bulk modulus, change in dimensions and volume.	10	CO2	L3
49	Calculate the modulus of rigidity and bulk modulus of a cylindrical bar of diameter 25 mm and length 1.6m, if the longitudinal strain in the bar during tensile test is four times the lateral strain. Also find the change in volume, when the bar is subjected to hydrostatic pressure of 100 N/mm ² . $E = 1 \times 10^5 \text{ N/mm}^2$.	10	CO2	L3
50	A bar of 20 mm diameter is subjected to a pull of 50 KN. The measured extension on gauge length of 250 mm is 0.12 mm and change in diameter is 0.00375 mm. Determine (I) Young's modulus (ii) Poisson's ratio (iii) Bulk modulus (iv) Modulus of rigidity.	10	CO2	L3

D2. TEACHING PLAN - 2

Module – 4

Title:	Torsion and Theories of failures	Appr Time:	10 Hrs
а	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Determine, torsional strength, rigidity, flexibility & dimension of shaft	CO5	L3
2	Determine dimension of bars using theories of failure	CO6	L3
b	Course Schedule		
Class No	Portion covered per hour	-	-
21	Circular solid and hallow shafts	CO5	L2
22	Torsional moment of resistance	CO5	L2
23	Power transmission of straight and stepped shafts	CO5	L2
24	Twist in shaft sections, thin tubular section, thin walled sections	CO5	L3
25	Numerical	CO5	L3
26	Maximum Principal stress theory	CO6	L2
27	Numerical	CO6	L3
28	Numerical	CO6	L3
29	Maximum Shear stress theory	CO6	L2
30	Numerical	CO6	L3
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Design of shaft	CO5	L3
2	Failure theories analysis	CO6	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
37	A solid shaft of 250 mm diameter has the same cross sectional area as the hollow shaft of the same material with inside diameter of 200 mm. Determine (I) ratio of power transmitted by the hollow shaft and the solid shaft for the same speed. (ii) Ratio of angle of twist by the hollow shaft and the solid shaft for the same maximum stress.	CO7	L3
38	Show that a hollow circular shaft whose inner diameter is half the outer diameter has a torsional strength equal to 15/16 of that of a solid shaft of same outside diameter.	CO7	L3
39	A solid shaft is required to transmit 300 KW power at 100 rpm. The shear stress of the materiel must not exceed 80 MPa. (I) Determine the diameter of solid shaft (ii) If the shaft is replaced by a hollow one with diameter ratio 3:5 and maximum shear stress remaining unchanged, calculate the percentage saving in weight of the material.	CO5	L3
40	A hollow shaft has to transmit 600 KW power at 80 rpm. The maximum twisting moment	CO5	L3

41Two shafts of the same material and of same lengths are subjected to the same torque, if the first shaft if of solid circular section and second shaft is hollow circular section, whose internal diameter is 0.7 times the outside diameter and the maximum stress developed in each shaft is the same, compare the weight of the shaftL342Define polar modulus. Find the expression for polar modulus of a solid shaftCO5L243What are the assumptions made in the pure torsion.CO5L244Derive the relation for a circular shaft when subjected to torsion as given below $\frac{\tau}{lp} = \frac{\tau}{R} = \frac{CO5}{l.2}$ L245Define the term torsional rigidity and torsional strength.CO5L146What do you mean by theories of failure? What is their importance?CO6L247Explain the following theories of failure.(i) Maximum normal stress theory (ii) Maximum shear stress induced at a critical point in a machine component made of steel are as follows: ax = 100N/mm2, ay = 40N/mm2, rXy = 80N/mm2. Calculate the factor of safety by i) Maximum shear stress theory ii) Maximum normal stress theoryL349Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress theory ii) Max. Max. strear stress theory ii) Max. strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.3L351A plate of 45C8 steel (<i>ayt</i> = 353MPa) is subjected to the following stresses $\sigma x = 150$ N/mm², $\sigma y = 100N/mm²$ and $\tau xy = 50N/mm2$. Find the factor of safety by i) Rankine's theory ii) Guest's theory.L351A plate of 45C8 steel (<i>ayt</i> = 353MPa) is subjected to the follo		N/mm ² and the diameter ratio is to be 0.8. What will be the angular twist measured over a length of 2m, if the modulus of rigidity is 84 GPa.		
42Define polar modulus. Find the expression for polar modulus of a solid shaftCO5L243What are the assumptions made in the pure torsion.CO5L244Derive the relation for a circular shaft when subjected to torsion as given below $\frac{T}{Jp} = \frac{r}{R} = \frac{CO5}{I}$ L244Derive the relation for a circular shaft when subjected to torsion as given below $\frac{T}{Jp} = \frac{r}{R} = \frac{CO5}{I}$ L245Define the term torsional rigidity and torsional strength.CO5L146What do you mean by theories of failure? What is their importance?CO6L247Explain the following theories of failure.(i) Maximum normal stress theory (ii) Maximum CO6L248The stress induced at a critical point in a machine component made of steel are as follows : ax = 100N/mm2 , ay = 40N/mm2 , tXy = 80N/mm2. Calculate the factor of safety by i) Maximum shear stress theory ii) Maximum normal stress theoryCO6L349Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress theory ii) Maximum shear stress theory ii) Max strain theory Elastic limit in tension = 250 MPa.CO6L350A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max. strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.3CO6L351A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm ² , σy = 100N/mm ² and τxy = 50N/mm2. Find the factor of safety by i) Rankine's theory ii) Guest's theory.C	41	the first shaft if of solid circular section and second shaft is hollow circular section, whose internal diameter is 0.7 times the outside diameter and the maximum stress developed in		L3
43What are the assumptions made in the pure torsion.CO3L244Derive the relation for a circular shaft when subjected to torsion as given below $\frac{T}{Ip} = \frac{T}{R} = \frac{CO5}{II}$ CO5L244Define the term torsional rigidity and torsional strength.CO5L145Define the term torsional rigidity and torsional strength.CO6L247Explain the following theories of failure.(i) Maximum normal stress theory (ii) Maximum ScoCO6L248The stress induced at a critical point in a machine component made of steel are as follows : ax = 100N/mm2 , ay = 40N/mm2 , tXy = 80N/mm2. Calculate the factor of safety by i) Maximum shear stress theory ii) Maximum normal stress theoryCO6L349Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress theory ii) Maximum shear stress theory ii) Maximum shear stress as 120MPa and allowable shear stress as 72 MPa.CO6L350A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max. strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.3CO6L351A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm ² σy = 100N/mm ² and τxy = 50N/mm ² . Find the factor of safety by i) Rankine's theory ii) Guest's theory.CO6L224	42		CO5	L2
Better the relation for a checklar shart when subjected to forsion as given below $\frac{1}{p} - \frac{1}{R} - \frac{1}{R}$ 45Define the term torsional rigidity and torsional strength.CO5L146What do you mean by theories of failure? What is their importance?CO6L247Explain the following theories of failure.(i) Maximum normal stress theory (ii) MaximumCO6L248The stress induced at a critical point in a machine component made of steel are as follows : ax = 100N/mm2 , ay = 40N/mm2 , tXy = 80N/mm2. Calculate the factor of safety by i) Maximum shear stress theory ii) Maximum normal stress theoryCO6L349Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress theory ii) Maximum shear stress theory. Take allowable normal stress as 120MPa and allowable shear stress as 72 MPa.CO6L350A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max. strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.3CO6L351A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm ² , σy = 100N/mm ² and τxy = 50N/mm2. Find the factor of safety by i) Rankine's theory ii) Guest's theory.CO6L2244-CO6L2	43		CO5	L2
46What do you mean by theories of failure? What is their importance?CO6L247Explain the following theories of failure.(i) Maximum normal stress theory (ii) Maximum shear stress theory.CO6L248The stress induced at a critical point in a machine component made of steel are as follows : ax = 100N/mm2 , ay = 40N/mm2 , tXy = 80N/mm2. Calculate the factor of safety by i) Maximum shear stress theory ii) Maximum normal stress theoryCO6L349Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress theory ii) Maximum shear stress theory. Take allowable normal stress as 120MPa and allowable shear stress as 72 MPa.CO6L350A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max. shear stress theory iii) Max. strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.3CO6L351A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm ² , σy = 100N/mm ² and τxy = 50N/mm2. Find the factor of safety by i) Rankine's theory ii) Guest's theory.CO6L22	44	Derive the relation for a circular shaft when subjected to torsion as given below $\frac{T}{Jp} = \frac{\tau}{R} = \frac{G\theta}{J}$	CO5	L2
46What do you mean by theories of failure? What is their importance?CO6L247Explain the following theories of failure.(i) Maximum normal stress theory (ii) Maximum shear stress theory.CO6L248The stress induced at a critical point in a machine component made of steel are as follows : ax = 100N/mm2 , ay = 40N/mm2 , tXy = 80N/mm2. Calculate the factor of safety by i) Maximum shear stress theory ii) Maximum normal stress theoryCO6L349Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress theory ii) Maximum shear stress theory. Take allowable normal stress as 120MPa and allowable shear stress as 72 MPa.CO6L350A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max. shear stress theory iii) Max. strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.3CO6L351A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm ² , σy = 100N/mm ² and τxy = 50N/mm2. Find the factor of safety by i) Rankine's theory ii) Guest's theory.CO6L22	45	Define the term torsional rigidity and torsional strength.	CO5	L1
47Explain the following theories of failure.(i) Maximum normal stress theory (ii) Maximum shear stress theory.CO6L248The stress induced at a critical point in a machine component made of steel are as follows : ax = 100N/mm2 , ay = 40N/mm2 , tXy = 80N/mm2. Calculate the factor of safety by i) Maximum shear stress theory ii) Maximum normal stress theoryL349Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress theory ii) Maximum shear stress theory. Take allowable normal stress as 120MPa and allowable shear stress as 72 MPa.CO6L350A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max. shear stress theory iii) Max. strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.3CO6L351A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm ² , σy = 100N/mm ² and τxy = 50N/mm2. Find the factor of safety by i) Rankine's theory ii) Guest's theory.CO6L34CO6L2	46		CO6	L2
follows : ax = 100N/mm2 , ay = 40N/mm2 , tXy = 80N/mm2. Calculate the factor of safety by i) Maximum shear stress theory ii) Maximum normal stress theoryCO6L349Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress theory ii) Maximum shear stress theory. Take allowable normal stress as 120MPa and allowable shear stress as 72 MPa.CO6L350A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max. shear stress theory iii) Max. strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.3CO6L351A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm ² , σy = 100N/mm ² and $\tau x y$ = 50N/mm2. Find the factor of safety by i) Rankine's theory ii) Guest's theory.CO6L3234CO6L2	47		CO6	L2
49Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress theory ii) Maximum shear stress theory. Take allowable normal stress as 120MPa and allowable shear stress as 72 MPa.CO6L350A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max. shear stress theory iii) Max. strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.3CO6L351A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm ² , σy = 100N/mm ² and $\tau x y$ = 50N/mm2. Find the factor of safety by i) Rankine's theory ii) Guest's theory.CO6L224CO6L2	48	follows : ax = $100N/mm2$, ay = $40N/mm2$, tXy = $80N/mm2$. Calculate the factor of		L3
50A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max. shear stress theory iii) Max. strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.3CO6L351A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm ² , σy = 100N/mm ² and τxy = 50N/mm2. Find the factor of safety by i) Rankine's theory ii) Guest's theory.CO6L3eExperiences1CO6L2234CO6L2	49	Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress theory ii) Maximum shear stress		L3
51A plate of 45C8 steel ($\sigma yt = 353$ MPa) is subjected to the following stresses $\sigma x = 150 \text{ N/mm}^2, \sigma y = 100 \text{N/mm}^2$ and $\tau x y = 50 \text{N/mm}^2$. Find the factor of safety by i)CO6L3Rankine's theory ii) Guest's theoryeExperiences1CO6L2234CO6L2	50	kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max. shear stress theory iii) Max. strain theory Elastic limit in tension = 250 MPa Factor		L3
1 CO6 L2 2 - - 3 - - 4 CO6 L2	51	A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm ² , σy = 100N/mm ² and $\tau x y$ = 50N/mm2. Find the factor of safety by i)	CO6	L3
2 2 3 4 CO6 L2		Experiences	-	-
3 4 CO6 L2			CO6	L2
4 CO6 L2				
			~~ ·	
			CO6	L2

Page 20 / 38

Module-5

- At the end of the topic the student should be able to	Title:	Columns and Strain Energy	Appr Time:	10 Hrs
1 A column or pillar in architecture and structural engineering is a structural element that transmits, through compression, L3 2 The strain energy in the form of elastic deformation is mostly recoverable in the form of mechanical work. C08 1 Buckling and stability C07 2.3 Course Schedule - 1.3 Buckling and stability C07 2.3. Columns with other support conditions C07 2.4 Effective length of columns, secant formula for columns C07 2.4 Effective length of columns, secant formula for columns C07 2.5 Numerical C08 L3 3.6 Castigliano's Theorem I and II C08 L2 3.7 Load deformation diagram C08 L3 3.8 Strain energy due to normal stresses, shear stresses modulus of resilience C08 L3 4.0 Numerical C08 L3 4.0 Numerical C08 L3 4.1 Numerical C08 L3 5.1 Design of columns C07 L3 6. Application Areas - -	a -			Blooms Level
2 The strain energy in the form of clastic deformation is mostly recoverable in the form of CO8 L3 mechanical work. - 3 Course Schedule - Class No Portoin covered per hour - - 31 Buckling and stability CO7 L2 32 Critical load Columns with pinned ends CO7 L2 33 Columns with other support conditions CO7 L2 34 Effective length of columns, secant formula for columns CO7 L2 36 Castigliano's Theorem I and II CO8 L2 37 Load deformation diagram CO8 L3 39 Strain energy due to normal stresses, shear stresses modulus of resilience CO8 L3 40 Numerical CO8 L3 40 Numerical CO7 L3 5 Students should be able employ / apply the Module learnings to	1	A column or pillar in architecture and structural engineering is a structural element that	CO7	
Class NoPortion covered per hour31Buckling and stabilityCO7L232Critical load Columns with pinned endsCO7L233Columns with other support conditionsCO7L234Effective length of columns, secant formula for columnsCO7L235NumericalCO7L336Castigliano's Theorem I and IICO8L237Load deformation diagramCO8L238Strain energy due to bending and torsion.CO8L340NumericalCO8L340NumericalCO8L340NumericalCO8L341CO8L3CO7L342Strain energy due to bending and torsion4Application AreasStudents should be able employ / apply the Module learnings to1Design of columnsCO7L32Strain energy stored in the materialsCO8L3-dReview QuestionsThe attainment of the module learning assessed through following questionsThe attainment of the module learning tactor of safety of 3CO7L32A endorm of square section is 2m long and pinned at its ends. Young's modulus for the column is fixed and the other end is free. Determine the inner diameter, taking E = 210CO7L353Determine t	2	The strain energy in the form of elastic deformation is mostly recoverable in the form of	CO8	L3
Class NoPortion covered per hour31Buckling and stabilityCO7L232Critical load Columns with pinned endsCO7L233Columns with other support conditionsCO7L234Effective length of columns, secant formula for columnsCO7L235NumericalCO7L336Castigliano's Theorem I and IICO8L237Load deformation diagramCO8L238Strain energy due to bending and torsion.CO8L340NumericalCO8L340NumericalCO8L340NumericalCO8L341CO8L3CO7L342Strain energy due to bending and torsion4Application AreasStudents should be able employ / apply the Module learnings to1Design of columnsCO7L32Strain energy stored in the materialsCO8L3-dReview QuestionsThe attainment of the module learning assessed through following questionsThe attainment of the module learning tactor of safety of 3CO7L32A endorm of square section is 2m long and pinned at its ends. Young's modulus for the column is fixed and the other end is free. Determine the inner diameter, taking E = 210CO7L353Determine t	b	Course Schedule		
31Buckling and stabilityCO7L232Critical load Columns with pinned endsCO7L233Columns with other support conditionsCO7L234Effective length of columns, sceant formula for columnsCO7L235NumericalCO7L336Castigliano's Theorem I and IICO8L237Load deformation diagramCO8L238Strain energy due to normal stresses, shear stresses modulus of resilienceCO8L339Strain energy due to bending and torsion.CO8L340NumericalCO8L340NumericalCO8L340NumericalCO8L341Design of columnsCO7L32Strain energy stored in the materialsCO7L32Strain energy stored in the materialsCO7L34Review QuestionsThatataimeent of the module learning assessed through following questionsThe attainment of the module learning assessed through following tabling E = 210CO7GPa and FOS = 4CO7L3Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, over all depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPaCO7L355Find Euler's crippling load for a strut of 'T' section, the flange width being 100 mm, over all depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and jinged at both ends. Also estimate	Class No		-	-
33Columns with other support conditionsCO71.234Effective length of columns, secant formula for columnsCO71.235NumericalCO71.336Castigliano's Theorem I and IICO81.237Load deformation diagramCO81.238Strain energy due to normal stresses, shear stresses modulus of resilienceCO81.339Strain energy due to bending and torsion.CO81.340NumericalCO81.340NumericalCO81.341Design of columnsCO71.32Strain energy stored in the materialsCO71.32Strain energy stored in the materialsCO81.341Design of columnsCO71.32Strain energy stored in the materialsCO81.352A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to CO71.3a load of 212.5 KN. Yield stress for the column material is 340 N/mm². One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210CO71.3GPa and FOS = 4CO71.3CO71.31.355Find Euler's crippling load for a strut of 'T' section, the flange width being 100 mm, cord column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely. Using a factor of safety of 31.355Find Euler's crippling load for a hollow cylindrical steel column of 38 mm external dinsenter and 2.5 mm wall thic			CO7	L2
34Effective length of columns, secant formula for columnsCO71.235NumericalCO71.336Castigliano's Theorem I and IICO81.237Load deformation diagramCO81.238Strain energy due to normal stresses, shear stresses modulus of resilienceCO81.339Strain energy due to bending and torsion.CO81.340NumericalCO81.340NumericalCO81.340NumericalCO81.340Strain energy due to bending and torsion.CO81.340NumericalCO81.340NumericalCO81.340Strain energy stored in the materialsCO71.32Strain energy stored in the materialsCO81.34A geview QuestionsThe attainment of the module learning assessed through following questionsThe attainment of the module stress for the column material is 340 N/mm². One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210GPa and FOS = 453Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPa1.354A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the valiely. Using a factor of safety of 31.355Find Euler's crippling load for a h		č i		L2
34Effective length of columns, secant formula for columnsCO71.235NumericalCO71.336Castigliano's Theorem I and IICO81.237Load deformation diagramCO81.238Strain energy due to normal stresses, shear stresses modulus of resilienceCO81.339Strain energy due to bending and torsion.CO81.340NumericalCO81.340NumericalCO81.340NumericalCO81.340Strain energy due to bending and torsion.CO81.340NumericalCO81.340NumericalCO81.340Strain energy stored in the materialsCO71.32Strain energy stored in the materialsCO81.34A geview QuestionsThe attainment of the module learning assessed through following questionsThe attainment of the module stress for the column material is 340 N/mm². One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210GPa and FOS = 453Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPa1.354A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the valiely. Using a factor of safety of 31.355Find Euler's crippling load for a h	33	Columns with other support conditions	CO7	L2
35NumericalCO7I.336Castigliano's Theorem I and IICO8I.237Load deformation diagramCO8I.238Strain energy due to normal stresses, shear stresses modulus of resilienceCO8I.339Strain energy due to bending and torsion.CO8I.340NumericalCO8I.340NumericalCO8I.3cApplication AreasStudents should be able employ / apply the Module learnings to1Design of columnsCO7I.32Strain energy stored in the materialsCO8I.3dReview QuestionsThe attainment of the module learning assessed through following questionsThe attainment of the module learning assessed through following questionsThe attainment of the module learning assessed through following questions52A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to CO7CO7I.353Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPaI.354A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column material is 12 GPa and the allowable stress being 12 MPa. Determine the siz				
36Castigliano's Theorem I and IICO8L237Load deformation diagramCO8L238Strain energy due to normal stresses, shear stresses modulus of resilienceCO8L339Strain energy due to bending and torsion.CO8L340NumericalCO8L340NumericalCO8L351Co8L3CO8L352Application AreasStudents should be able employ / apply the Module learnings to1Design of columnsCO7L32Strain energy stored in the materialsCO8L3dReview QuestionsThe attainment of the module learning assessed through following questionsThe attainment of the module learning assessed through following questions-52A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 4CO7L353Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPaCO7L354A column of square section is 2m long and pinned at its ends. Young's modulus for the column to support a load of 200 KN safely. Using a factor of safety of 3CO7L355Find Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter an				
37Load deformation diagramCO81.238Strain energy due to normal stresses, shear stresses modulus of resilienceCO81.339Strain energy due to bending and torsion.CO81.340NumericalCO81.36Application AreasStudents should be able employ / apply the Module learnings toStudents should be able employ / apply the Module learnings to1Design of columnsCO7L32Strain energy stored in the materialsCO81.3dReview QuestionsThe attainment of the module learning assessed through following questions52A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm². One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210CO7L353Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPaCO7L354A column of square section is 2m long and pinned at its ends. Young's modulus for the column tatia is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely. Using a factor of safety of 3CO7L355Find Euler's crippling load for a thrut of column, Rankine's parameter are 335 N/mm² and 1/7500L3L356Find the l				
38Strain energy due to normal stresses, shear stresses modulus of resilienceCO8L339Strain energy due to bending and torsion.CO8L340NumericalCO8L340NumericalCO8L341CO8L3CO8L342Students should be able employ / apply the Module learnings to				
39Strain energy due to bending and torsion.CO8L340NumericalCO8L340NumericalCO8L3 c Application AreasStudents should be able employ / apply the Module learnings to1Design of columnsCO7L32Strain energy stored in the materialsCO8L3 dReview Questions The attainment of the module learning assessed through following questionsThe attainment of the module learning assessed through following questionsThe attainment of the module learning assessed through following questionsThe attainment of the module learning assessed through following questionsThe attainment of the module learning assessed through following questionsThe attainment of the module learning assessed through following questionsThe attainment of the module learning assessed through following questionsThe attainment of the module learning assessed through following questions52A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to CO7L353Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends.CO7L354A column of square section is 2m long and pinned at its ends. Young's modu				
40NumericalCO8L3cApplication AreasStudents should be able employ / apply the Module learnings to1Design of columnsCO7L32Strain energy stored in the materialsCO7L3dReview QuestionsThe attainment of the module learning assessed through following questionsThe attainment of the module learning assessed through following questionsThe attainment of the module learning assessed through following questionsThe attainment of the module learning assessed through following questionsThe attainment of the module learning assessed through following questions52A 2 m long column with hollow circular section of outer diameter, taking E = 210 GPa and FOS = 4CO7L353Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPaCO7L354A column of square section is 2m long and pinned at its ends. Young's modulus for the column tatia is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely. Using a factor of safety of 3CO7L355Find Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter and 2.5 mm wall thickness. Length of column is 2.3m and is hinged at both ends. Also estimate Rankine's load of this column, Rank			CO8	L3
-Students should be able employ / apply the Module learnings to	40	Numerical	CO8	L3
-Students should be able employ / apply the Module learnings to	C	Application Areas	-	_
1Design of columnsCO7L32Strain energy stored in the materialsCO8L3dReview QuestionsThe attainment of the module learning assessed through following questions52A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm ² . One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210CO7L353Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPaCO7L354A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely, Using a factor of safety of 3CO7L355Find Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter and 2.5 mm wall thickness. Length of column, 82.3m and is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm ² and 1/7500L356Find the length of a mild steel rod 25 mm x 25 mm which can be used as a compression member with one end fixed and the other end free to carry a working load of 40 Kn. Given FOS = 4, $\alpha = \frac{1}{7500}\sigma_c = 320N/mm^2$ L357A cast iron column 140 mm external diameter and 70 mm internal diameter is 3.5 m long. CO7CO7L357A cast iron column 140 mm external diameter and 70 mm interna				
2Strain energy stored in the materialsCO8L3dReview QuestionsThe attainment of the module learning assessed through following questions52A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to CO7CO7L3a load of 212.5 KN. Yield stress for the column material is 340 N/mm ² . One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 4CO7L353Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPaCO7L354A column of square section is 2m long and pinned at its ends. Young's modulus for the column to support a load of 200 KN safely, Using a factor of safety of 3CO7L355Find Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter and 2.5 mm wall thickness. Length of column is 2.3m and is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm ² and 1/7500CO7L356Find the length of a mild steel rod 25 mm x 25 mm which can be used as a compression member with one end fixed and the other end free to carry a working load of 40 Kn. Given FOS = 4, $\alpha = \frac{1}{7500}\sigma_c = 320N/mm^2$ CO7L357A cast iron column 140 mm external diameter and 70 mm internal diameter is 3.5 m long. CO7CO7L358end factor of safety = 3 use Rankine's formulaCO7L3	1		CO7	L3
-The attainment of the module learning assessed through following questions52A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm². One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 4CO7L353Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPaCO7L354A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely, Using a factor of safety of 3CO7L355Find Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter and 2.5 mm wall thickness. Length of column is 2.3m and is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm² and 1/7500CO7L356Find the length of a mild steel rod 25 mm x 25 mm which can be used as a compression member with one end fixed and the other end free to carry a working load of 40 Kn. Given FOS = 4, $\alpha = \frac{1}{7500} \sigma_c = 320 N/mm^2$ CO7L357A cast iron column 140 mm external diameter and 70 mm internal diameter is 3.5 m long. CO7CO7L3600MPa; $\alpha = \frac{1}{1600}$ and factor of safety = 3 use Rankine's formulaCO7L3	2	ě	CO8	L3
52A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm². One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 4CO7L353Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPaCO7L354A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely, Using a factor of safety of 3CO7L355Find Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter and 2.5 mm wall thickness. Length of column is 2.3m and is hinged at both ends. Also estimate Rankine's load of the tis column, Rankine's parameter are 335 N/mm² and 1/7500CO7L356Find the length of a mild steel rod 25 mm x 25 mm which can be used as a compression member with one end fixed and the other end free to carry a working load of 40 Kn. Given FOS = 4, $\alpha = \frac{1}{7500}\sigma_c = 320N/mm^2$ CO7L357A cast iron column 140 mm external diameter and 70 mm internal diameter is 3.5 m long. CO7CO7L358Given FOS = 4, $\alpha = \frac{1}{1600}$ and factor of safety = 3 use Rankine's formulaCO7L3	d	Review Questions	-	-
a load of 212.5 KN. Yield stress for the column material is 340 N/mm². One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 4CO7L353Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPaCO7L354A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely, Using a factor of safety of 3CO7L355Find Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter and 2.5 mm wall thickness. Length of column is 2.3m and is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm² and 1/7500CO7L356Find the length of a mild steel rod 25 mm x 25 mm which can be used as a compression member with one end fixed and the other end free to carry a working load of 40 Kn. Given FOS = 4, $\alpha = \frac{1}{7500} \sigma_c = 320 N/mm^2$ CO7L357A cast iron column 140 mm external diameter and 70 mm internal diameter is 3.5 m long. CO7CO7L357A cast iron column 140 mm external diameter and 70 mm internal diameter is 3.5 m long. CO7CO7L3	-	The attainment of the module learning assessed through following questions	-	-
overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends $E = 200$ GPa54A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely, Using a factor of safety of 3CO7L355Find Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter and 2.5 mm wall thickness. Length of column is 2.3m and is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm ² and $1/7500$ CO7L356Find the length of a mild steel rod 25 mm x 25 mm which can be used as a compression member with one end fixed and the other end free to carry a working load of 40 Kn. Given FOS = 4, $\alpha = \frac{1}{7500} \sigma_c = 320$ N/mm ² CO7L357A cast iron column 140 mm external diameter and 70 mm internal diameter is 3.5 m long. CO7CO7L357A cast iron column 140 mm external diameter and 70 mm internal diameter is 3.5 m long. CO7CO7L3	52	a load of 212.5 KN. Yield stress for the column material is 340 N/mm ² . One end of the column is fixed and the other end is free. Determine the inner diameter, taking $E = 210$		L3
column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely, Using a factor of safety of 3CO755Find Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter and 2.5 mm wall thickness. Length of column is 2.3m and is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm ² and $1/7500$ CO7L356Find the length of a mild steel rod 25 mm x 25 mm which can be used as a compression member with one end fixed and the other end free to carry a working load of 40 Kn. Given FOS = 4, $\alpha = \frac{1}{7500}\sigma_c = 320$ N/mm ² CO7L357A cast iron column 140 mm external diameter and 70 mm internal diameter is 3.5 m long. Calculate the safe axial load the column can carry if both ends are fixed. Take $\sigma_c =$ 600 MPa; $\alpha = \frac{1}{1600}$ and factor of safety = 3 use Rankine's formulaCO7L3		overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends $E = 200$ GPa		
diameter and 2.5 mm wall thickness. Length of column is 2.3m and is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm ² and 1/750056Find the length of a mild steel rod 25 mm x 25 mm which can be used as a compression member with one end fixed and the other end free to carry a working load of 40 Kn. Given FOS = 4, $\alpha = \frac{1}{7500}\sigma_c = 320$ N/mm ² CO7L357A cast iron column 140 mm external diameter and 70 mm internal diameter is 3.5 m long. Calculate the safe axial load the column can carry if both ends are fixed. Take $\sigma_c =$ 600 MPa; $\alpha = \frac{1}{1600}$ and factor of safety = 3 use Rankine's formulaCO7L3		column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely, Using a factor of safety of 3		
56Find the length of a mild steel rod 25 mm x 25 mm which can be used as a compression member with one end fixed and the other end free to carry a working load of 40 Kn. Given FOS = 4, $\alpha = \frac{1}{7500}\sigma_c = 320$ N/mm²CO7L357A cast iron column 140 mm external diameter and 70 mm internal diameter is 3.5 m long. Calculate the safe axial load the column can carry if both ends are fixed. Take $\sigma_c = 600$ MPa; $\alpha = \frac{1}{1600}$ and factor of safety = 3 use Rankine's formulaCO7L3	55	diameter and 2.5 mm wall thickness. Length of column is 2.3m and is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm ² and		L3
57 A cast iron column 140 mm external diameter and 70 mm internal diameter is 3.5 m long. CO7 L3 Calculate the safe axial load the column can carry if both ends are fixed. Take $\sigma_c = 600$ MPa; $\alpha = \frac{1}{1600}$ and factor of safety = 3 use Rankine's formula	56	Find the length of a mild steel rod 25 mm x 25 mm which can be used as a compression member with one end fixed and the other end free to carry a working load of 40 Kn.	CO7	L3
1000	57	A cast iron column 140 mm external diameter and 70 mm internal diameter is 3.5 m long. Calculate the safe axial load the column can carry if both ends are fixed. Take $\sigma_c =$	CO7	L3
	58	What are the assumption and limitation of Euler's formula	CO7	L2

59	Define slenderness ration and discuss the importance of slenderness ration on the compressive strength of columns.	CO7	L2
60	What are columns, post, strut and a boom	CO7	L2
61	Derive the expression for Euler's critical load for a long column with both ends fixed.	CO7	L2
62	What is the difference between short and long columns	CO7	L2
63	What is meant by the effective length of a column? State the values of effective length for	CO7	L2
05	various column end conditions.	007	12
61		CO8	L2
64	Define the terms, strain energy, resilience and modulus of resilience.		
65	State and prove Castigliano's first theorem.	CO8	L2
66	State and prove Castigliano's Second theorem	CO8	L2
67	A 1.6 m long bar is applied an axial pull such that the maximum stress induced is 140 MPa. The larger and smaller area of cross section are 240 mm ² and 120 mm ² . Determine	CO8	L3
60	the strain energy stored in the bar as shown in Fig 83.	999	× 0
68	A bar of length 400 mm and diameter 50 mm is subjected to a tensile load of 20 KN. Find the stress, elongation and strain energy produced if the load is applied gradually. What would be the instantaneous stress and elongation if the same load is applied suddenly. Take $E = 200$ GPa.	CO8	L3
69	A weight of 2 KN falls 24 mm on to a collar fixed to a steel bar 14 mm in diameter and 5.5 m long. Determine he maximum sress induced in the bar due to impact. $E = 205$ GPa	CO8	L3
70	Calculate the strain energy stored in a bar 2 m long, 50 mm wide and 40 mm thick, when it is subjected to tensile load of 50 KN. Take $E = 200$ GPa.	CO8	L3
71	A Rectangular body 500mm long, 100mm wide and 50 mm thick is subjected to a shear stress of 80 MPa. Determine the strain energy stored in the body, $G = 85$ GPa.	CO8	L3
72	A stepped steel rod is in two parts, one has diameter 25 mm. The box is lowered at the rate of $1m$ /sec. When the freely hanging rope is 12 m, the machine gets load is brought to a stop instantaneously. Find the maximum stress in the rope and the instantaneous deformation due to jamming. Take E = 200 GPa.	CO8	L3
73	A cantilever beam is loaded as shown in Fig. Determine the deflection and slope at the free end by using Castigliano's theorem.	CO8	L3
74	A shaft is in two parts as shown in Fig. Find the total strain energy stored in it Take $G = 85$ GPa.	CO8	L3
75	A simple beam ACB supporting an uniform load w over the first half of the beam and a couple of moment M_0 at end B is shown in Fig. 91. Determine the strain energy U stored in the beam due to the load w and the couple M_0 acting simultaneously.	CO8	L3
76	A cantilever beam of uniform cross section carries a point load at the free end. Determine strain energy and deflection at the free end. If $F = 200$ kN, $E = 200$ GPa, $L = 3$ mt and $I = 10^{-4}$ m ⁴ .	CO8	L3
77	Two bars, each of length and of different materials are each subjected to the same tensile force P. The first bar has a uniform diameter 'D' and the second bar has a diameter of $D/2$ for a length L/4 and a diameter D for the remaining length. Compare the strain energies of the two bars if, (i) E1/E2=4/7 and (ii) E1 = E2		L3
78	Define strain energy and Resilience	CO8	L1
e	Experiences	-	-
1		CO7	L2
2			
3			
4		CO8	L2
5		0.00	L2

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs C	Code:	18ME32	Sem:	III	Marks:	30	Time:	90	minutes		
Course: Mechanics of Materials											
-	-	Note: Answe	er all quest	ions, each ca	rry equal ma	rks. Modu	ıle : 4, 5		Marks	CO	Level
1	а	Derive the r	elation for	a circular sh	aft when subj	jected to the	orsion as given l	below	08	CO5	L2
		$\frac{T}{T} = \frac{\tau}{T} = \frac{G\theta}{T}$									
		Jp R l									

	b	According to the theory of maximum shear stress, determine the diameter of a bolt which is subjected to an axial pull of 9KN together with a transverse shear force of 4.5 KN. Elastic limit in tension is 225N/mm2, factor of safety=3 & Poisson's ratio=0.3	07	CO6	L3
		OR			
2	a	A solid shaft is required to transmit 300 KW power at 100 rpm. The shear stress of the materiel must not exceed 80 MPa. (I) Determine the diameter of solid shaft (ii) If the shaft is replaced by a hollow one with diameter ratio 3:5 and maximum shear stress remaining unchanged, calculate the percentage saving in weight of the material.	8	CO5	L3
	b	Explain the following theories of failure.(i) Maximum normal stress theory (ii) Maximum shear stress theory.	7	CO6	L2
3	а	A cantilever beam of uniform cross section carries a point load at the free end. Determine strain energy and deflection at the free end. If $F = 200$ kN, $E = 200$ GPa, L = 3mt and I = 10^{-4} m ⁴ .	7	CO8	L3
	b	A cast iron column 140 mm external diameter and 70 mm internal diameter is 3.5 m long. Calculate the safe axial load the column can carry if both ends are fixed. Take	8	CO7	L3
		$\sigma_c = 600$ MPa; $\alpha = \frac{1}{1600}$ and factor of safety = 3 use Rankine's formula			
		OR			
4	а	Calculate the strain energy stored in a bar 2 m long, 50 mm wide and 40 mm thick, when it is subjected to tensile load of 50 KN. Take $E = 200$ GPa.	8	CO8	L3
	b	Derive the expression for the crippling load for tn=he column for the both ends pinned condition	7	CO7	L2

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

tote. If distinct ussignment to be ussigned to each stadent.												
	Model Assignment Questions											
Crs Co	ode:	18ME32	Sem:	3	Marks:	10	Time:	90 – 120 n	ninutes			
Course	e:	Mechanics	s of Materials			Module	: 4, 5					
Note:	Each s	student to a	inswer 2-3 assig	gnments. Ea	ach assignmen	t carries eq	ual mark.					
SNo		USN	Assignment Description				Marks	CO	Level			
1			A solid shaft o	f 250 mm	diameter has tl	ne same cr	oss sectional area a	as 10	CO5	L3		
			the hollow sha	ft of the same	me material w	ith inside d	liameter of 200 mn	n.				
			Determine (I)	ratio of po	wer transmitte	d by the h	ollow shaft and th	ie				
							f twist by the hollo	w				
			shaft and the so	olid shaft fo	or the same ma	ximum stre	ess.					
2			Show that a ho	llow circula	ar shaft whose	inner diam	eter is half the oute	er 10	CO5	L3		

Himmeter has a torisonal strength equal to 15/16 of that of a solid shaftImage: Constraint of the solution of the so	of same outside diameter.Image: Constraint of the same is 200 KW power at 100 pm. The diameter of solid shaft (ii) If the shaft is replaced by a hollow one with diameter ratio 3:5 and maximum shear stress remaining unchanged, calculate the percentage saving in weight of the material.COSL34A hollow shaft has to transmit 600 KW power at 80 pm. The maximum twisting moment may exceed the mean by 40% Design a suitable section, if the permissible stress is 50 Nnm ² and the diameter ratio is to be 0.8. What will be the angular twist measured over a length of 2m, if the modulus of rigidity is 84 GPa.10CO5L35Two shafts of the same material and of same lengths are subjected to the same torque. if the first shaft if of solid circular section and second shaft is hollow circular section, whose internal diameter is 0.7 times the outside diameter and the maximum stress developed in each shaft is the same, compare the weight of the shaft.10CO5L27What are the assumptions made in the pure torsion.10CO5L28Derive the relation for a circular shaft when subjected to torsion as given below $\frac{1}{I_P} = \frac{1}{n} = \frac{40}{10}$ 10CO5L210What doy uncan by theories of failure? What is their importance?10CO6L211Explain the following theories of failure? What is their importance?10CO6L312The stress induced at a critical point in a machine component mude of theory ii) Maximum normal stress theory10CO6L313Find the diameter of tould os shele stress as 20MPa and altowable normal stress as 120MPa and altowable stress as 20MPa10CO6 <th></th> <th>COURSE PLAN - CAY 2019-20</th> <th></th> <th></th> <th></th>		COURSE PLAN - CAY 2019-20			
3 A solid shaft is required to transmit 300 KW power at 100 rpm. The low one with diameter ratio 3:5 and maximum shear stress remaining unchanged. 10 CO5 L3 4 A hollow shaft has to transmit 600 KW power at 80 rpm. The maximum trysing moment may exceed the mean by 40%. Design a suitable section. If the permissible stress is 90 N/mm² and the diameter ratio is to e0.8. Mhat with the he angular twist measured over a length of 2m, if the modulus of rigidity is 84 GPa. 10 CO7 L3 5 Two shafts of the same material and of same lengths are subjected to 10 0 CO5 L2 6 Define polar modulus. Find the expression for polar modulus of a solid the same torque, if the first shaft if of solid circular section and second shaft is hollow circular section, whose internal diameter is 0.7 times the outside diameter and the maximum stress developed in each shaft is the same. Compare the weighth of the shaft 10 CO5 L2 7 What are the assumptions made in the pure torsion. 10 CO5 L2 8 Derive the relation for a circular shaft when subjected to torsion as given below $\frac{1}{p_D} = \frac{1}{n} \frac{n^2}{10}$ 10 CO6 L2 9 Define the term torsional rigidity and torsional strength. 10 CO6 L2 11 Explain the following thereirs of failure? What is their importance? 10 CO6 L2 12	3 A solid shaft is required to transmit 300 KW power at 100 rpm. The shear stress of the material must not exceed 80 MPa. (D) Determine the diameter of solid shaft (ii) If the shaft is replaced by a hollow one with diameter ratio is to and maximum shear stress remaining unchanged. calculate the percentage saving in weight of the material. 10 CO5 L3 4 A hollow shaft has to transmit 600 KW power at 80 rpm. The maximum trysiting moment may exceed the mean by 40% Design a suitable section. If the permissible stress is 90 Nmm ² and the diameter ratio is to 60.8 MHa will be the angular twist measured over a length of 2m, if the modulus of rigidity is 84 GPa. 10 CO5 L3 5 Trow shafts of the same material and of same lengths are subjected to 10 10 CO5 L2 6 Define polar modulus. Find the expression for polar modulus of a solid shaft is the same torque, if the first shaft if of solid circular section and second shaft is hollow inclus area to indice shaft is holl more solid shaft. 10 CO5 L2 7 What are the assumptions made in the pure torsion. 10 CO5 L2 8 Derive the relation for a circular shaft when subjected to torsion as given below; $\frac{10}{ID} = \frac{1}{n} = \frac{4}{10}$ 10 CO5 L2 9 Define the term torsional rigidity and torsional strength. 10 CO5 L2 11 Explain the following therefactor of safety the j) Maximum normal stress theory;					
maximum twisting moment may exceed the mean by 40% Design a suitable section, if the permissible strss is 90 N/mm² and the diameter ratio is to be 0.8. What will be the angular twist measured over a length of 2m, if the modulus of rigidity is 84 GPa.Image: Construct the section of the section and second shaft is hollow circular section, whose internal diameter is 0.7 times the outside diameter and the maximum stress developed in each shaft is the same, compare the weight of the shaftImage: Construct and the section of the section whose section whose internal diameter is 0.7 times the outside diameter and the maximum stress developed in each shaft is the same, compare the weight of the shaftImage: Construct and the section of the s	Image: set in the permissible stress is 90 N/mm² and the diameter ratio is to be 0.8. What will be the angular twist measured over a kength of 2m, if the modulus of rigidity is 84 GPa.Image: set in the permissible stress is 90 N/mm² and the diameter is 10 to state material and of same lengths are subjected to the same torque, if the first shaft if of solid circular section and second shaft is hollow circular section, whose internal diameter is 0.7 times the outside diameter and the maximum stress developed in each shaft is the same, compare the weight of the shaft.Image: second second second shaft is hollow circular section, whose internal diameter is 0.7 times the same, compare the weight of the shaft.Image: second secon	3	A solid shaft is required to transmit 300 KW power at 100 rpm. The shear stress of the materiel must not exceed 80 MPa. (I) Determine the diameter of solid shaft (ii) If the shaft is replaced by a hollow one with diameter ratio 3:5 and maximum shear stress remaining unchanged,	10	CO5	
the same torque, if the first shaft if of solid circular section and second shaft is hollow circular section, whose internal diameter is 0.7 times the outside diameter and the maximum stress developed in each shaft is the same, compare the weight of the shaftImage: Compare the weight of the shaft6Define polar modulus. Find the expression for polar modulus of a solid shaft10CO51.27What are the assumptions made in the pure torsion.10CO51.28Derive the relation for a circular shaft when subjected to torsion as given below $\frac{T}{pp} = \frac{T}{a} = \frac{6\theta}{a}$ 10CO51.29Define the tern torsional rigidity and torsional strength.10CO61.210What do you mean by theories of failure? What is their importance?10CO61.211Explain the following theories of failure? What is their importance?10CO61.212The stress induced at a critical point in a machine component made of steel are as follows: ax = 100N/mm2, ay = 40N/mm2, tXy = 80N/mm2. Calculate the factor of safety by i) Maximum shear stress theory ii) Maximum shear stress theory.10CO61.313Find the diameter of round rod subjected to a bending moment of 1.810CO61.314A bolit is acted upon by an axial pull of 16 kN along with a transverse bory ii) Maximum stress theory ii) Max, shear stress theory iii) Max, shear stress theory iii) Max, shear stress theory iii) Max stress as 120MPa and allowable shear stress for the tollowing stress as 20 MPa and allowable shear stress are for a stress theory iii) Max is a stress theory iii) Max is a stress stress of the oci of safety by	the same torque, if the first shaft if of solid circular section and second shaft is hollow circular section, whose internal diameter is 0.7 times the outside diameter and the maximum stress developed in each shaft is the same, compare the weight of the shaft10CO51.26Define polar modulus. Find the expression for polar modulus of a solid shaft10CO51.27What are the assumptions made in the pure torsion.10CO51.28Derive the relation for a circular shaft when subjected to torsion as given below $\frac{T}{p_p} = \frac{\pi}{\pi} = \frac{c\theta}{t_1}$ 10CO51.29Define the tern torsional rigidity and torsional strength.10CO61.211Explain the following theories of failure? What is their importance?10CO61.212The stress induced at a critical point in a machine component made of steel are as follows: ax = 100N/mm2, ay = 40N/mm2, tXy = 80N/mm2. Calculate the factor of safety by i) Maximum normal stress theory ii) Maximum normal stress theory ii) Maximum normal stress theory.10CO6L313Find the diameter of round rod subjected to a bending moment of 1.810CO6L314A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max: principal stress theory iii) Max shear stress stress or yiii Max. strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5CO6L315A plate of 45C8 steel ($\sigma_T = 530$ RPa) is subjected to the following era is free. Determine the inner diameter, taking E = 210 GPa and FOS = 4CO7L	4	maximum twisting moment may exceed the mean by 40%.Design a suitable section, if the permissible stress is 90 N/mm ² and the diameter ratio is to be 0.8. What will be the angular twist measured over a length	10	C07	L3
6Define polar modulus. Find the expression for polar modulus of a solid shaft10COSL27What are the assumptions made in the pure torsion.10COSL28Derive the relation for a circular shaft when subjected to torsion as given below $\frac{T}{T_p} = \frac{\pi}{8} = \frac{G\theta}{1}$ 10COSL29Define the term torsional rigidity and torsional strength.10COSL210What do you mean by theories of failure? What is their importance?10CO6L211Explain the following theories of failure? What is their importance?10CO6L212The stress induced at a critical point in a machine component made of steel are as follows: ax = 100N/mn2, ay = 40N/mn2, tXy = 80N/mn2. Calculate the factor of safety by 1) Maximum shear stress theory10CO6L313Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to 1) Maximum normal stress at 120MP and allowable bars stress at 72 MPa.10CO6L314A bolt is acted upon by an axial pull of 16 kN along with a transverse s or a s120MP and allowable bars stress at 72 MPa.10CO6L315A plate of 45C8 steel (σyt = 353MPa) is subjected to the following m is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm ² , σy = 100N/mm ² and rxy = 50N/mm2. Find the factor of safety by 1) Rankine's theory ii) Guest's theory.10CO7L316A 2 m long column with hollow circular section of outer diameter 180 m is subjected to a load of 212.5 KN. Yield stress for the column material	6 Define polar modulus. Find the expression for polar modulus of a solid shaft 10 CO5 L2 7 What are the assumptions made in the pure torsion. 10 CO5 L2 8 Derive the relation for a circular shaft when subjected to torsion as given below $\frac{T}{Ip} = \frac{r}{k} = \frac{c\theta}{1}$ 10 CO5 L2 9 Define the term torsional rigidity and torsional strength. 10 CO6 L2 10 What do you mean by theories of failure? What is their importance? 10 CO6 L2 11 Explain the following theories of failure? What is their importance? 10 CO6 L2 12 The stress induced at a critical point in a machine component made of steel are as follows: ax = 100N/m2, ay = 40N/m2, tXy = 80N/m2, tXy = 80N/m2. Calculate the factor of safety by i) Maximum shear stress theory 10 CO6 L3 13 Find the diameter of round rod subjected to a bending moment of L8 10 CO6 L3 14 A bolt is acted upon by an axial pull of 16 KN along with a transverse stheory ii) Max. principal stress theory ii) Max. shear stress theory iii) Max. strait theory Eastor of safety pull of 16 KN along with a transverse soluced to a load of 212.5 KN. Yield stress for the columin material is 340 Nmm ² , $og = 100 Nmm2, og = 100 Nmm2, ag = 100 Nmm2, ag = 10 CO6 L3 14$	5	the same torque, if the first shaft if of solid circular section and second shaft is hollow circular section, whose internal diameter is 0.7 times the outside diameter and the maximum stress developed in each shaft is the	10	CO5	L3
7What are the assumptions made in the pure torsion.10CO5L28Derive the relation for a circular shaft when subjected to torsion as given below $\frac{T}{T_p} = \frac{\sigma}{R} = \frac{\sigma \theta}{1}$ 10CO5L29Define the term torsional rigidity and torsional strength.10CO6L210What do you mean by theories of failure? (Matinum normal stress theory (ii) Maximum shear stress theory.10CO6L211Explain the following theories of failure? (Matinum normal stress theory (ii) Maximum shear stress theory.10CO6L312The stress induced at a critical point in a machine component made of steel are as follows: ax = 100Nmn2, ay = 40Nmn2, tXy = 80N/mn2. Calculate the factor of safety by i) Maximum normal stress theory ii) Maximum shear stress 	7What are the assumptions made in the pure torsion.10CO5L28Derive the relation for a circular shaft when subjected to torsion as given below $\frac{T}{p} = \frac{\pi}{k} = \frac{\sigma_0}{1}$ 10CO5L29Define the term torsional rigidity and torsional strength.10CO6L210What do you mean by theories of failure.(i) Maximum normal stress theory (ii) Maximum shear stress theory.10CO6L211Explain the following theories of failure.(i) Maximum normal stress theory (ii) Maximum shear stress theory.10CO6L312The stress induced at a critical point in a machine component made of steel are as follows: ax = 100N/mn2, ay = 40N/mn2, tXy = 80N/mn2. Calculate the factor of safety by i) Maximum normal stress and uce of 1.2 kN-m, according to i) Maximum normal stress theory ii) Maximum shear stress theory. Take allowable normal stress as 120MPa and allowable shear stress ar 22 MPa.10CO6L314A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max, principal stress theory ii) Max, shear stress theory and target 2.5 Poisson's ratio = 0.310CO6L315A plate of 45C8 steel ($\sigma yt = 353$ MPa) is subjected to the following stresses $\sigma x = 150$ N/mm ² , $\sigma y = 100$ N/mm ² and $\tau xy = 500$ N/mm2. Find the factor of safety by 1) Rankine's theory ii) Max, strain theor Elastic limit in tension = 250 MPa factor of sadety e.25 Poisson's ratio = 0.310CO6L316A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yi	6	Define polar modulus. Find the expression for polar modulus of a solid	10	CO5	L2
given below $\frac{T}{J_{B}} = \frac{T}{a} = \frac{6}{b}$ Image: constraint of the term torsional rigidity and torsional strength.Image: constraint of the term torsional rigidity and torsional strength.Image: constraint of the term torsional rigidity and torsional strength.Image: constraint of the term torsional rigidity and torsional stress their importance?Image: constraint of the term torsional rigidity and torsional stress theory (ii) Maximum shear stress theory.11Explain the following theories of failure? What is their importance?Image: constraint of term term torsional rigidity and torsional stress theory.Image: constraint of term term torsional rigidity and torsional stress theory (ii) Maximum shear stress theory.Image: constraint of term term torsional stress theory.Image: constraint of term term torsional stress theory.Image: constraint of term term term term term term term term	given below $\frac{1}{p} = \frac{\pi}{8} = \frac{\theta}{1}$ 10CO5L29Define the term torsional rigidity and torsional strength.10CO5L210What do you mean by theories of failure? What is their importance?10CO6L211Explain the following theories of failure.(i) Maximum normal stress10CO6L212The stress induced at a critical point in a machine component made of steel are as follows: ax = 100N/mn2, ay = 40N/mn2, tXy = 80N/mm2. Calculate the factor of safety by i) Maximum shear stress theory ii) Maximum normal stress theory10CO6L313Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress as 120MPa and allowable shear stress as 72 MPa.10CO6L314A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max, principal stress theory ii) Max as stress theory.10CO6L315A plate of 45C8 steel ($\sigma yt=$ 353MPa) is subjected to the following stresses $\sigma x = 150$ N/mn2, $\sigma y = 100$ N/mn2 and $\tau xy = 50$ N/mn2. Find the factor of safety by i) Rankine's theory ii) Guest's theory.10CO7L316A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column mm thick. The strut is on long and is hinged at both ends E = 210 GPa10CO7L318A column of square section is 2m long and pinned at its ends. Young's modulus for the column materia is 12 GPa and the allowable stress bein	7	What are the assumptions made in the pure torsion.	10	CO5	L2
9Define the term torsional rigidity and torsional strength.10CO5L210What do you mean by theories of failure? What is their importance?10CO6L211Explain the following theories of failure? What is their importance?10CO6L212The stress induced at a critical point in a machine component made of steel are as follows: ax = 100N/mm2, ay = 40N/mm2, tXy = 80N/mm2, Calculate the factor of safety by i) Maximum shear stress theory ii) Maximum normal stress theory10CO6L313Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress theory ii) Maximum shear stress theory. Take allowable normal stress as 120MPa and allowable stress as 72 MPa.10CO6L314A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max shear stress theory iii) Max, strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.310CO6L315A plate of 45C8 steel (<i>ayt</i> = 353MPa) is subjected to the following mm is subjected to a load of 212.5 KN. Yield stress for the column mm aterial is 340 N/mm ² , One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 410CO7L317Determine the buckling load for a strut of 'T' section, the flang width modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support aload of 200 KN safely, Using a factor of safety of 3	9Define the term torsional rigidity and torsional strength.10CO5L210What do you mean by theories of failure? What is their importance?10CO6L211Explain the following theories of failure? What is their importance?10CO6L212The stress induced at a critical point in a machine component made of steel are as follows: ax = 100N/mm2, ay = 40N/mm2, tXy = 80N/mm2. Calculate the factor of safety by i) Maximum shear stress theory ii) Maximum normal stress theory10CO6L313Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress as 120MPa and allowable shear stress as 72 MPa.10CO6L314A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max. shear stress theory iii) Max, strati netory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.3CO6L315A plate of 45C8 steel ($ayt=353MPa$) is subjected to the following mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm². One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 410CO7L317Determine the buckling load for a strut of T' section, the flang width being 100 mm, overall depth 80 mm and both flang and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPa10CO7L318A column of square section of 312 GPa and the allowable stress being 1	8	Derive the relation for a circular shaft when subjected to torsion as	10	CO5	L2
11Explain the following theories of failure.(i) Maximum normal stress10CO6L211The stress induced at a critical point in a machine component made of steel are as follows: ax = 100N/mm2, ay = 40N/mm2, tXy = 80N/mm2. Calculate the factor of safety by i) Maximum shear stress theory ii) Maximum normal stress theory10CO6L313Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress as 120MPa and allowable shear stress shear force of 10 kN. Determine the diameter of the bolt required, using i) Max, principal stress theory ii) Max shear stress theory iii) Max strain theory Elastic limit in tension = 250 MPa10CO6L314A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max, principal stress theory ii) Max shear stress theory.10CO6L315A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm ² , σy = 100N/mm ² and τxy = 50N/mm2. Find the factor of safety by i) Rankine's theory ii) Guest's theory.10CO7L316A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 21.25 KN. Yield stress for the column material is 340 N/mm ² . One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa10CO7L318A column of square section is 2m long and pinned at its ends, Young's modulus for the column material is 20Pa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely. Using a	11Explain the following theories of failure.(i) Maximum normal stress10CO6L211Explain the following theories of failure.(i) Maximum normal stress10CO6L212The stress induced at a critical point in a machine component made of steel are as follows: ax = 100N/mm2, ay = 40N/mm2, tXy = 80N/mm2. Calculate the factor of safety by i) Maximum shear stress theory ii) Maximum normal stress theory10CO6L313Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress as 120MPa and allowable shear stress as 72 MPa.10CO6L314A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max, principal stress theory ii) Max, shear stress theory iii) Max, strain theory Elastic limit in tension = 250 MPa.10CO6L315A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm ² , σy = 100N/mm ² and τxy = 50N/mm2. Find the factor of safety by i) Rankine's theory.10CO6L316A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm ² . One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa10CO7L318A column of square section is 2m long and pinned at its ends. Young' modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely. Using a factor of safet	9		10	CO5	L2
theory (ii) Maximum shear stress theory.Image: constraint of the stress induced at a critical point in a machine component made of steed are as follows: ax = 100N/mm2, ay = 40N/mm2, tXy = 80N/mm2. Calculate the factor of safety by i) Maximum shear stress theory ii) Maximum normal stress theoryImage: constraint of 1.8COGL313Find the diameter of round rod subjected to a bending moment of 1.810CO6L314A boti is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max, principal stress theory ii) Max, shear stress theory iii) Max, strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.3Image: constraint theory is constraint of a stress is for a stress of the column material is 340 N/mm ² . One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 4Image: constraint of the stress is of constraint is stress is of constraint is a stress of constraint is is and long and is hinged at both ends E = 200 GPaImage: constraint is constraint is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN stafety of 3Image: constraint is constraint is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN stafety. Using a factor of safety of 3Image: constraint is column is column is column and is hinged at both ends E = 200 GPa17Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and	theory (ii) Maximum shear stress theory.CO612The stress induced at a critical point in a machine component made of steel are as follows: ax = 100N/mm2, ay = 40N/mm2, tXy = 80N/mm2. Calculate the factor of safety by i) Maximum shear stress theory ii) Maximum normal stress theory10CO6L313Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress theory ii) Maximum shear stress theory. Take allowable normal stress as 120MPa and allowable shear stress as 72 MPa.10CO6L314A boti is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max, strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.310CO6L315A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses $\sigma x = 150$ N/mm ² , $\sigma y = 100N/mm^2$ and $\tau xy = 50N/mm2$. Find the factor of safety by i) Rankine's theory ii) Guest's theory.10CO7L316A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm ² . One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 410CO7L317Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends. E = 200 GPa10CO7L318A column of square section is 2m long and pinned at its ends. Young's mod	10	What do you mean by theories of failure? What is their importance?	10	CO6	L2
steel are as follows: ax = 100N/mm2, ay = 40N/mm2, tXy = 80N/mm2, Calculate the factor of safety by i) Maximum shear stress theory ii) Maximum normal stress theory10CO6L313Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress theory ii) Maximum shear stress theory. Take allowable normal stress as 120MPa and allowable shear stress as 720MPa.10CO6L314A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max, shear stress theory iii) Max, strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.310CO6L315A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm ² , σy = 100N/mm ² and τxy = 50N/mm2. Find the factor of safety by i) Rankine's theory ii) Guest's theory.10CO7L316A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm ² . One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 410CO7L317Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPa10CO7L318A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determ	steel are as follows: ax = 100N/mm2, ay = 40N/mm2, tXy = 80N/mm2. Calculate the factor of safety by i) Maximum shear stress theory ii) Maximum normal stress theory10CO6L313Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress theory ii) Maximum shear stress theory. Take allowable normal stress as 120MPa and allowable shear stress as 72 MPa.10CO6L314A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max. shear stress theory iii) Max. strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.310CO6L315A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm ² , σy = 100N/mm ² and τxy = 50N/mm2. Find the factor of safety by i) Rankine's theory ii) Guest's theory.10CO7L316A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm ² . One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 410CO7L317Determine the buckling load for a strut of 'T' section, the flange width thick. The strut is 3m long and is hinged at both ends E = 200 GPa10CO7L318A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely, Using	11		10	CO6	L2
13Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress theory ii) Maximum shear stress theory. Take allowable normal stress as 120MPa and allowable shear stress as 72 MPa.10CO6L314A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max. shear stress theory iii) Max. strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.310CO6L315A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm², σy = 100N/mm² and τxy = 50N/mm2. Find the factor of safety by i) Rankine's theory ii) Guest's theory.10CO7L316A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm². One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 410CO7L318A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely, Using a factor of safety of 310CO7L319Find Euler's crippling load for a shlow eylindrical steel column of 38 a m ad is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm² and 17500CO7L320Find the length of a mild steel rod 25 mm x 25 mm which can be used10CO7 <t< td=""><td>13Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress theory ii) Maximum shear stress theory. Take allowable normal stress as 120MPa and allowable shear stress as 72 MPa.10CO6L314A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max. shear stress theory iii) Max. strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.310CO6L315A plate of 45C8 steel (σyt= 353MPa) is subjected to the following stresses σx = 150 N/mm², σy = 100N/mm² and τxy = 50N/mm2. Find the factor of safety by i) Rankine's theory ii) Guest's theory.10CO7L316A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm². One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 410CO7L317Determine the buckling load for a strut of 'T' section, the flange width thick. The strut is 3m long and is hinged at both ends E = 200 GPa10CO7L318A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely, Using a factor of safety of 310CO7L319Find Euler's crippling load for a hollow cylindrical steel column of 38 2.3m and is hinged at both ends. Also estimate Rankine's loa</td><td>12</td><td>steel are as follows: ax = $100N/mm2$, ay = $40N/mm2$, tXy = $80N/mm2$. Calculate the factor of safety by i) Maximum shear stress</td><td>10</td><td>CO6</td><td>L3</td></t<>	13Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress theory ii) Maximum shear stress theory. Take allowable normal stress as 120MPa and allowable shear stress as 72 MPa.10CO6L314A bolt is acted upon by an axial pull of 16 kN along with a transverse shear force of 10 kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max. shear stress theory iii) Max. strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.310CO6L315A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm ² , σy = 100N/mm ² and τxy = 50N/mm2. Find the factor of safety by i) Rankine's theory ii) Guest's theory.10CO7L316A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm ² . One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 410CO7L317Determine the buckling load for a strut of 'T' section, the flange width thick. The strut is 3m long and is hinged at both ends E = 200 GPa10CO7L318A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely, Using a factor of safety of 310CO7L319Find Euler's crippling load for a hollow cylindrical steel column of 38 2.3m and is hinged at both ends. Also estimate Rankine's loa	12	steel are as follows: ax = $100N/mm2$, ay = $40N/mm2$, tXy = $80N/mm2$. Calculate the factor of safety by i) Maximum shear stress	10	CO6	L3
shear force of 10 kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max. shear stress theory iii) Max. strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.310CO6L315A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm ² , σy = 100N/mm ² and τxy = 50N/mm2. Find the factor of safety by i) Rankine's theory ii) Guest's theory.10CO6L316A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm ² . One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 410CO7L317Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPa10CO7L318A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely. Using a factor of safety of 310CO7L319Find Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter and 2.5 mm wall thickness. Length of column is 2.3m and is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm ² and 1/750010CO7L3	shear force of 10 kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max. shear stress theory iii) Max. strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5 Poisson's ratio = 0.310CO6L315A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm ² , σy = 100N/mm ² and τxy = 50N/mm2. Find the factor of safety by i) Rankine's theory ii) Guest's theory.10CO6L316A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm ² . One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 410CO7L317Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPa10CO7L318A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely. Using a factor of safety of 310CO7L319Find Euler's crippling load for a hollow cylindrical steel column of 38 a. 2.3m and is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm ² and 1/7500CO7L3	13	Find the diameter of round rod subjected to a bending moment of 1.8 kN-m and a torque of 1.2 kN-m, according to i) Maximum normal stress theory ii) Maximum shear stress theory. Take allowable normal	10	CO6	L3
15A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm ² , σy = 100N/mm ² and τxy = 50N/mm2. Find the factor of safety by i) Rankine's theory ii) Guest's theory.10CO6L316A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm ² . One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 410CO7L317Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPa10CO7L318A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely, Using a factor of safety of 310CO7L319Find Euler's crippling load for a hollow cylindrical steel column of 38 an and is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm ² and 1/7500CO7L3	15A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses σx = 150 N/mm ² , σy = 100N/mm ² and τxy = 50N/mm2. Find the factor of safety by i) Rankine's theory ii) Guest's theory.10CO6L316A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm ² . One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 410CO7L317Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPa10CO7L318A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely, Using a factor of safety of 310CO7L319Find Euler's crippling load for a hollow cylindrical steel column of 38 a. 2.3m and is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm ² and 1/7500CO7L3	14	shear force of 10 kN. Determine the diameter of the bolt required, using i) Max. principal stress theory ii) Max. shear stress theory iii) Max. strain theory Elastic limit in tension = 250 MPa Factor of safety = 2.5	10	CO6	L3
16A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm². One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 410CO7L317Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPa10CO7L318A column of square section is 2m long and pinned at its ends. Young's 	16A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm². One end of the column is fixed and the other end is free. Determine the inner diameter, taking E = 210 GPa and FOS = 410CO7L317Determine the buckling load for a strut of 'T' section, the flange width being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPa10CO7L318A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely, Using a factor of safety of 310CO7L319Find Euler's crippling load for a hollow cylindrical steel column of 38 nm external diameter and 2.5 mm wall thickness. Length of column is 2.3m and is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm² and 1/750010CO7L3	15	A plate of 45C8 steel (σyt = 353MPa) is subjected to the following stresses $\sigma x = 150 \text{ N/mm}^2, \sigma y = 100 \text{N/mm}^2$ and $\tau x y = 50 \text{N/mm}^2$. Find the	10	CO6	L3
being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPaIOCO7L318A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 	being 100 mm, overall depth 80 mm and both flange and web 10 mm thick. The strut is 3m long and is hinged at both ends E = 200 GPaCO7L318A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely, Using a factor of safety of 310CO7L319Find Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter and 2.5 mm wall thickness. Length of column is 2.3m and is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm² and 1/750010CO7L320Find the length of a mild steel rod 25 mm x 25 mm which can be used10CO7L3	16	A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm ² . One end of the column is fixed and the other end is free. Determine the inner diameter, taking $E = 210$ GPa and FOS = 4	10		L3
18 A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely, Using a factor of safety of 3 10 CO7 L3 19 Find Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter and 2.5 mm wall thickness. Length of column is 2.3m and is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm ² and 1/7500 10 CO7 L3 20 Find the length of a mild steel rod 25 mm x 25 mm which can be used 10 CO7 L3	18 A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200 KN safely, Using a factor of safety of 3 10 CO7 L3 19 Find Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter and 2.5 mm wall thickness. Length of column is 2.3m and is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm ² and 1/7500 10 CO7 L3 20 Find the length of a mild steel rod 25 mm x 25 mm which can be used 10 CO7 L3	17	being 100 mm, overall depth 80 mm and both flange and web 10 mm	10	CO7	L3
19Find Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter and 2.5 mm wall thickness. Length of column is 2.3m and is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm² and 1/750010CO7L320Find the length of a mild steel rod 25 mm x 25 mm which can be used10CO7L3	19Find Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter and 2.5 mm wall thickness. Length of column is 2.3m and is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm² and 1/750010CO7L320Find the length of a mild steel rod 25 mm x 25 mm which can be used10CO7L3	18	A column of square section is 2m long and pinned at its ends. Young's modulus for the column material is 12 GPa and the allowable stress being 12 MPa. Determine the size of column to support a load of 200	10	CO7	L3
e	e		Find Euler's crippling load for a hollow cylindrical steel column of 38 mm external diameter and 2.5 mm wall thickness. Length of column is 2.3m and is hinged at both ends. Also estimate Rankine's load for this column, Rankine's parameter are 335 N/mm ² and 1/7500			
	as a compression member with one end fixed and the other end free to	20		10	CO7	L3

Copyright ©2017. cAAS. All rights reserved.

	COURSE FLAN - CAI 2019-20			
	carry a working load of 40 Kn. Given FOS = 4, $\alpha = \frac{1}{7500}\sigma_c = 320$ N/mm ²			
21	A cast iron column 140 mm external diameter and 70 mm internal diameter is 3.5 m long. Calculate the safe axial load the column can carry if both ends are fixed. Take $\sigma_c = 600$ MPa; $\alpha = \frac{1}{1600}$ and factor of	10	CO7	L3
	safety = 3 use Rankine's formula 1600			
22	What are the assumption and limitation of Euler's formula	10	CO7	L2
23	Define slenderness ration and discuss the importance of slenderness ration on the compressive strength of columns.	10	CO7	L2
24 25	What are columns, post, strut and a boom Derive the expression for Euler's critical load for a long column with both ends fixed.	10 10	CO7 CO7	L2 L2
26	What is the difference between short and long columns	10	CO7	L2
27	What is meant by the effective length of a column? State the values of effective length for various column end conditions.	10	CO7	L2
28	Define the terms, strain energy, resilience and modulus of resilience.	10	CO8	L2
29	State and prove Castigliano's first theorem.	10	CO8	L2
30	State and prove Castigliano's Second theorem	10	CO8	L2
31	A 1.6 m long bar is applied an axial pull such that the maximum stress induced is 140 MPa. The larger and smaller area of cross section are 240 mm ² and 120 mm ² . Determine the strain energy stored in the bar as shown in Fig 83.	10	CO8	L3
32	A bar of length 400 mm and diameter 50 mm is subjected to a tensile load of 20 KN. Find the stress, elongation and strain energy produced if the load is applied gradually. What would be the instantaneous stress and elongation if the same load is applied suddenly. Take $E = 200$ GPa.	10	CO8	L3
33	A weight of 2 KN falls 24 mm on to a collar fixed to a steel bar 14 mm in diameter and 5.5 m long. Determine he maximum sress induced in the bar due to impact. $E = 205$ GPa	10	CO8	L3
34	Calculate the strain energy stored in a bar 2 m long, 50 mm wide and 40 mm thick, when it is subjected to tensile load of 50 KN. Take $E = 200$ GPa.	10	CO8	L3
35	A Rectangular body 500mm long, 100mm wide and 50 mm thick is subjected to a shear stress of 80 MPa. Determine the strain energy stored in the body, $G = 85$ GPa.	10	CO8	L3
36	A stepped steel rod is in two parts, one has diameter 25 mm. The box is lowered at the rate of 1m/sec. When the freely hanging rope is 12 m, the machine gets load is brought to a stop instantaneously. Find the maximum stress in the rope and the instantaneous deformation due to jamming. Take $E = 200$ GPa.	10	CO8	L3
37	A cantilever beam is loaded as shown in Fig. Determine the deflection and slope at the free end by using Castigliano's theorem.	10	CO8	L3
38	A shaft is in two parts as shown in Fig. Find the total strain energy stored in it Take $G = 85$ GPa.	10	CO8	L3
39	A simple beam ACB supporting an uniform load w over the first half of the beam and a couple of moment M_o at end B is shown in Fig. 91. Determine the strain energy U stored in the beam due to the load w and the couple M_o acting simultaneously.	10	CO8	L3
40	A cantilever beam of uniform cross section carries a point load at the free end. Determine strain energy and deflection at the free end. If $F = 200$ kN, $E = 200$ GPa, $L = 3$ mt and $I = 10^{-4}$ m ⁴ .	10	CO8	L3
41	Two bars, each of length and of different materials are each subjected to the same tensile force P. The first bar has a uniform diameter 'D' and the second bar has a diameter of D/2 for a length L/4 and a diameter D for the remaining length. Compare the strain energies of the two bars if, (i) $E1/E2=4/7$ and (ii) $E1 = E2$	10	CO8	L3
42	Define strain energy and Resilience	10	CO8	L2

D3. TEACHING PLAN - 3

Module – 3

Title:	Shear force and Bending Moment Diagrams	Appr	10 Hrs
	Bending Stresses in Beams	Time:	
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Draw shear force diagram & Bending moment diagram for a Simply supported beam & cantilever beam with point load, UDL & UVL	CO9	L3
2	Determine the bending stress distribution of rectangular, symmetrical I &T section	CO10	L3
b	Course Schedule	-	-
	Portion covered per hour	-	-
41	Types of beams, Loads and reactions,	CO9	L2
42	Relationship between loads, shear forces and bending moments	CO9	L2
43	Shear force bending moments of cantilever beams subjected to concentrated loads, UDL / UVL $\!$	CO9	L3
44	Shear force bending pin support subjected to concentrated loads, UDL / UVL	CO9	L3
45	Shear force roller supported beam subjected to concentrated loads, UDL / UVL	CO9	L3
46	Pure bending, curvature of beam	CO10	L2
47	Longitudinal strains in beams	CO10	L2
48	Bending stresses in beams with rectangular, flexure formula and bending stress	CO10	L3
49	Bending stresses in beams with circular, flexure formula and bending stress	CO10	L3
50	Bending stresses in beams with 'I' and 'T' cross section, flexure formula and bending stress	CO10	L3
с	Application Areas	-	
-	Students should be able employ / apply the Module learnings to	_	-
1	Design of Bridges,	CO9	L3
2	Structural analysis in the field of construction of bridges, etc.	CO10	L3

18ME32

л			
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
79	What is a beam? What do you mean by statically indeterminate beam?	CO9	L2
80	How are beams classified? Give a brief account.	CO9	L2
81	What are the main type of supports? Distinguish between roller and hinged supports.	CO9	L2
82	Define the terms Axial force, Shear force, bending moment and point of contraflexure.	CO9	L2
83	Explain the sign convection for axial force, Shear force and bending moment.	CO9	L2
84	What are sagging and hogging bending moments?	CO9	L2
85	Derive the relation between intensity of loading, shear force and bending moment in a beam.	CO10	L2
86	The bending moment in a beam is maximum or minimum where shear force is zero. Is the converse true? Why?	CO10	L2
87	Indicate the shape of shear force diagram in case of uniformly distributed load and for triangular loads.	CO10	L2
88	For the beam shown in Fig. Draw the SFD and BMD. Determine the maximum BM and point of Contraflexure.	CO9	L3
89	A simply supported beam is shown in Fig.46. Draw SFD & BMD	CO9	L3
90	Find the reactions at the fixed end draw the shear force diagram and bending moment	CO9	L3
	A JookN-m 1m 2m		
91	A cantilever 2m long is loaded with uniformally distributed load of 10KN/m run over a length of 1.5m from the free end. It also carries a point load of 10 KN at a distance of 0.5 m from the free end. Find the reaction st the fixed end and draw the SFD and BMD.	CO9	L3
92	Derive the relationship between load shear force and bending moment for UDL.	CO9	L2
93	Derive bending equation $\frac{M}{I} = \frac{\sigma}{\gamma} = \frac{E}{R}$.	CO10	L3
94	A simply supported beam of span 5m has a cross section 150mm x 250 mm. If the permissible stress is 10 N/mm ² , find (I) maximum intensity of uniformly distributed load it can carry, (ii) maximum concentrated load P applied at 2m from an end it can carry	CO10	L3
95	A timber cantilever 200 mm wide and 300 mm deep is 3 m long. It is loaded with a UDL of 3 KN/m over the entire length. A point load of 2.7 KN is placed at the free end of the cantilever. Find the maximum bending stress produced.	CO10	L3
96	A rectangular beam 300 mm deep is simply supported over a span of 4m. What uniformly distributed load per meter the beam may carry. If the bending stress is not to exceed 120 N/mm ² take I= 8×10^6 mm ⁴ .		L3
97	Prove that in case of a rectangular section of a beam, the maximum shear stress is 1.5 times average shear stress.	CO10	L3
98	A rolled steel joint, simply supported across a span of 4 m and carrying a UDL of 80 KN/m, has the following dimensions. Overall depth 350 mm, each flange 150 mm x 25 mm and web 300 x 12 mm. Determine the magnitude of the bending and shearing stresses at the junction of the web with the top flange at a section 1 m away from the support.	CO10	L3
e	Experiences	_	-
е 1	Experiences	- CO10	- L2
1	Experiences	- CO10 CO9	_ L2
1 2	Experiences	- CO10 CO9	L2
1	Experiences		- L2 L2

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs C	Code:	18ME32	Sem:	III	Marks:	30	Time:	75 minutes	5	
Cour	se:	Mechanics	of Materials							
-	-	Note: Answ	wer all ques	tions, each	carry equal ma	rks. Modu	ıle : 3	Marks	CO	Level
1	а		m shown in. f Contraflex	-	ne SFD and BM	D. Determ	ine the maximum B	SM 8	CO9	L3
	b	Derive ben	ding equatio	$n \frac{M}{I} = \frac{\sigma}{y} = \frac{E}{R}$	2			7	CO10	L2
					OR					
2	a				th uniformally end and draw t		l load of 10 KN/m d BMD.	run 8	CO9	L3
	b		in case of a verage shear		section of a be	am, the m	aximum shear stres	s is 7	CO10	L2
3	а	Derive the a beam.	relation betw	veen intensi	ty of loading, sh	ear force a	and bending momer	nt in 8	CO9	L2
	b	permissible	e stress is 10	N/mm^2 , fin	d (I) maximum	intensity of	0mm x 250 mm. If of uniformly distribut t 2m from an end it	uted	CO10	L3
					OR					
4	a	Define the contraflexu		ial force,	Shear force, b	bending n	noment and point	of 7	CO9	L2
	b	KN/m, has 25 mm and	the followin web 300 x 1	g dimension 2 mm. Dete	ns. Overall deptlermine the magn	h 350 mm, iitude of th	d carrying a UDL o each flange 150 m e bending and shea tion 1 m away from	m x ring	CO10	L3

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

	101 (500	Model Assignment Questions		•	
Crs Code Course:		Sem:IIIMarks:10Time:cs of MaterialsModule : 3	90 – 120 n	ninutes	
		answer 2-3 assignments. Each assignment carries equal mark.			
SNo	USN	Assignment Description	Marks	CO	Level
1	USIN	A simply supported beam 6 m long carries a uniformly distributed loa of 10 KN/m over the whole span. Calculate the AF, SF and BM every 2m length and at the mid span.	d 10	CO9	Level L3
2		Cantilever beam loaded as shown in Fig Calculate the AF,For a SF a BM values from B and at A.	& 10	CO9	L2
3		Draw the SFD and BMD for a cantilever beam with an uniform distributed load.	y 10	CO9	L2
4		Draw the SFD and BMD for a cantilever beam with a point load at free end.	e 10	CO9	L2
5		Draw the SFD and BMD for a cantilever beam with an uniform varying load.	y 10	CO9	L2
6		For the beam shown in Fig. Draw shear force and bending momen diagram. Locate the point of contraflexure if any.		CO9	L3
7		A cantilever beam carries UDL and point loads as shown in Fig. Fin the reactions at the fixed end and draw the SFD and BMD.	d 10	CO9	L3
8		Find the reaction at the supports and draw the shear force and bendin moment diagrams for the overhanging beam shown in Fig.	g 10	CO9	L3
		Find the reactions at the fixed end and draw the SFD and BMD for the		CO9	

	COURSE PLAN - CAY 2019-20			
	cantilever beam loaded as shown in Fig.			
	20KN $20KN$ $10KN1m$ $1m$ $1.5m$ 1			
10	Find the reactions at the free end and draw the shear force diagram and bending moment diagram for the beam loaded as shown in Fig. Locate the point of contraflexure if any.	10	CO9	L3
11	A cantilever 2m long is loaded with uniformally distributed load of 10	10	CO9	L3
	KN/m run over a length of 1.5 m from the free end and draw the SFD and BMD.	10		
12	A cantilever of length 2 m carries a uniformly distributed load of 10 KN/m length over the whole length and a point load of 5 KN at the free end. Find the reactions at the fixed end and draw the SFD and BMD for the beam.	10	CO9	L3
13	Find the reaction at the supports and draw the SFD and BMD for the overhanging beam shown in Fig. $A \xrightarrow{20 \text{ KN/m}} \xrightarrow{40 \text{ KN}} \xrightarrow{6} \xrightarrow{20 \text{ KN}} \xrightarrow{20 \text{ KN}} \xrightarrow{6} \xrightarrow{7} \xrightarrow{7} \xrightarrow{7} \xrightarrow{7} \xrightarrow{7} \xrightarrow{7} \xrightarrow{7} 7$	10	CO9	L3
14	Find the reactions at the supports and draw the shear force and bending moment diagrams for the overhanging beam as shown in Fig. 30kN/m $25kN$ $30kN/m$ $30kN/m$ $3m$ $3m$ $3m$ $3m$ $3m$ $3m$ $3m$ 3	10	CO9	L2
15	Simply supported beam of length 6m, carries point load of 3 kN and 6 kN at distances of 2 m and 4 m from the left end. Draw the shear force and bending moment diagrams for the beam.	10	CO9	L2
16	Draw the SFD and BMD for a simply supported beam with a point load at mid point.	10	CO9	L2
17	Draw the SFD and BMD for a simply supported beam with an eccentric point load.	10	CO9	L2
18 19	Draw the SFD and BMD for a simply supported beam carrying an UDI. Draw the SFD and BMD for a simply supported beam carrying an UVL from zero at each end to w per unit length at the center.	10 10	CO9 CO9	L2 L2
20	Draw the SFD and BMD for a simply supported beam carrying an UVL from zero at one end to w per unit length at the other end.	10	CO9	L2
21	Draw the SFD and BMD for a simply supported beam subjected to a couple at its mid span point.	10	CO9	L2

COURSE PLAN - CAY 2019-20

JOKN ZOKN SIOKNIM	
K-2m - 2m - 4m - J	
22 A simply supported beam of 6 m long is subjected to loads 2 KN , 5 10 CO9 KN and 4 KN at a distances 1.5 m, 3 m and 4.5 m from the left support. Draw the SFD and BMD.	L3
23 Draw the SFD and BMD of a Overhanging beam loaded as shown in 10 CO9 Fig. $30kN/m$ $25kN$ $20kN$ A $3m$ $3m$ m $25kN$ $20kN$	L2
24 A simply supported beam of span 6 m is subjected to a concentrated load of 25 KN acting at a distance of 2 m from the left end. Also subjected to an uniformly distributed load of 10 KN/m over the entire span. Draw the bending moment and shear force diagram indicating the maximum and minimum values. 10 CO9	L3
25 A overhanging beam is loaded as shown in Fig. Draw the SFD and BMD. Also find the position and amount of maximum bending moment.	L2
26 For the beam AC shown in the Fig, determine the magnitude of the load P acting at C, such that the reaction at supports A and B are equal. Draw shear force and bending moment diagrams and locate the point of contra flexure if any	L2
27 Draw the SFD and BMD for a overhanging beam loaded as shown in Fig. Locate the point of contraflexure if any.	L2
28 Draw the SFD and BMD for a cantilever beam loaded as shown in Fig. 10 CO9	L2

	20KN 20KN IOKN			
29	A beam ABCD is simply supported at B and C, 4.5m apart and overhanging parts AB and CD are 1.5m and 2m long respectively. The beam carries a uniformly distributed load of 10kN/m between A & C. There is a clock wise couple of 60kN-m at D. Then draw S.F and B.M diagrams and mark salient points.	10	CO9	L3
30	Draw shear force and bending moment diagrams for the beam shown in Fig. marking values at salient points. Locate the point of contraflexure and point of maximum bending moment. Determine the value of maximum bending moment.	10	CO9	L3
31	An overhanging beam ABC is loaded as shown in Fig. Draw the SFD and BMD. Also locate point of contraflexure. Determine maximum positive and negative bending moments.	10	CO9	L3
32	A beam 6 m long rests on two supports with equal over hangs on either side and carries an UDL of 30 KN/m over the entire length of the beam as shown in Fig. Calculate the overhangs if the maximum positive and negative bending moment are to be same. Draw the SFD and BMD and locate salient points.	10	CO9	L3
33	Draw the SFD and BMD for a SSB beam loaded as shown in Fig.	10	CO9	L3
34	A cantilever has a length of 3m. Its cross — section is of T — section with flange 100mm x 20mm and web 200mm x 12mm, the flange is in tension. What is the intensity of UDL that can be applied if the maximum tensile stress is limited to 30N/mm ² ? Also compute the maximum compressive stress.	10	CO10	L3
35	Find the maximum bending stress for the T section shown in Fig.	10	CO9	L3
36	A cantilever of square section 200 mm x 200 mm, 2 meter long just fails in flexure when a load of 12 KN is placed at its free end. A beam of same material and having a rectangular cross section 150 mm wide and 300 mm deep is simply supported over a span of 3 m. calculate the minimum central concentrated load required to break the beam.	10	CO10	L3
37	simply supported beam of T' section carries a uniformly distributed load of 40 kN/m run on entire span of beam of 10 m. If T' section is having dimensions as shown in Fig. determine the maximum stress developed due to bending.	10	CO10	L3

COURSE PLAN - CAY 2019-20

	20 mm			
38	A cantilever beam of square section 200mm x 200mm, 2 m long just fails bending, when a load of 20 KN is placed at its free end. A beam of same material having a rectangular cross section 150mm x 300 mm, simply supported over a span of 3 m is to be used under a UDL 20 KN/m	10	CO10	L3
39	A simply supported beam of span 3m has T-cross section. The flange is 100mm x 20mm and the web is 200mm x 12mm, with the flange in compression. The maximum compressive stress is to be limited to 90MPa. Find the maximum intensity of UDL that can be carried and the corresponding tensile stress induced.	10	CO10	L3
40	A simply supported beam of span 5 m has a cross section 150 mm x 250 mm. If the permissible stress is 10 N/mm ² , find (I) Maximum intensity of uniformly distributed load it can carry. (ii) Maximum concentrated load P applied at 2 m from one end it can carry.	10	CO10	L3

F. EXAM PREPARATION

1. University Model Question Paper

Course	e:	Mechanics of Materials	Month /	Year	Dec /20)19
Crs Co	ode:	18ME32 Sem: III Marks: 60	Time:		180 mii	nutes
	Note	Answer all FIVE full questions. All questions carry equal marks.		Marks	CO	Level
le						
1		Derive an expression for total extension of tapering circular bar cross se diameter 'D' and 'd' when subjected to an axial pull of load P	ection of	08	CO1	L2
	b	A concrete column is of square section with 250 mm size and is reinforced steel bars of 16 mm diameter. The member supports an axial load of 2 Evaluate the stresses in steel and concrete assuming a modular ratio as 18			CO2	L3
		OR				
2		Define I) Hooke's law (ii) Poisson's ratio (iii) Volumetric strain (iv) Morrigidity v) Normal stress	dulus of	10	CO1	L1
	b	The tensile test was conducted on mild steel bar. The following data was from the test, Diameter of steel bar = 16 mm, Load at proportionality limit , Load at failure = 80 KN, diameter of the rod at failure = 12mm, gauge lengt bar = 80 mm, extension at load of 60 KN = 0.115 mm, Final gauge length 104 mm. Determine (I) Young's modulus (ii) Proportionality limit (iii) Pe elongation (iv) Percentage decrease in area (v) Breaking stress.	= 72 KN th of the of bar =		CO1	L3
3	a	Direct stresses of 120 N/mm ² tensile and 90 N/mm ² compression exist perpendicular planes at a certain point in a body. They are also accompa shear stress on the plane. The greatest principal stress at the point due to thes N/mm ² . Determine (I) Magnitude of shearing stress on the two pla Maximum shearing stress at the point.	anied by se is 150		CO3	L3
	b	Obtain an expression for volumetric strain in case of thin cylindrical shell of diameter 'd' subjected to internal pressure 'p'.	f internal	10	CO4	L2
		OR				
4		At a Certain point in a strained material the values of normal stresses act planes at right angles to each other are 80 MPa, both tensile and there is stress of 32 MPa cw on the plane carrying 80 MPa stresses across the Determine (I) Maximum and minimum stresses and locate their plan Maximum shear stress and specify its plane. (iii) Normal stress on maximus stress plane. (iv) Verify the answer by Mohr's circle method.	a shear planes. nes. (ii) m shear		CO3	L3
	b	A Cylindrical pressure vessel of 250 mm inner radius Is subjected to pressure of 10 N/mm ² allowable stress for the material of the cylinder is 40 Determine (I) Wall thickness of cylinder (ii) percentage error involved w	N/mm ² .		CO4	L3

		thickness is calculated based on thin cylinder.			
5	а	Show that a hollow circular shaft whose inner diameter is half the outer diameter has a torsional strength equal to 15/16 of that of a solid shaft of same outside diameter.	12	CO5	L3
	b	Explain the following theories of failure.(i) Maximum normal stress theory (ii) Maximum shear stress theory.	8	CO6	L2
		OR			
6	a	Derive the relation for a circular shaft when subjected to torsion as given below $\frac{T}{Jp} = \frac{\tau}{R} = \frac{G\theta}{l}$	12	CO5	L3
	b	What do you mean by theories of failure? What is their importance?	8	CO6	L2
7	a	A 2 m long column with hollow circular section of outer diameter 180 mm is subjected to a load of 212.5 KN. Yield stress for the column material is 340 N/mm ² . One end of the column is fixed and the other end is free. Determine the inner diameter, taking $E = 210$ GPa and FOS = 4	10	C07	L
	b	Derive the expression for Euler's critical load for a long column with both ends fixed.	10	CO8	Ľ
		OR			
8	a	A cast iron column 140 mm external diameter and 70 mm internal diameter is 3.5 m long. Calculate the safe axial load the column can carry if both ends are fixed. Take	10	CO7	L
		$\sigma_c = 600$ MPa; $\alpha = \frac{1}{1600}$ and factor of safety = 3 use Rankine's formula			
	b	A 1.6 m long bar is applied an axial pull such that the maximum stress induced is 140 MPa. The larger and smaller area of cross section are 240 mm ² and 120 mm ² . Determine the strain energy stored in the bar as shown in Fig 83.	10	CO8	
9	a	Derive the relation between intensity of loading, shear force and bending moment in a beam.	08	CO9	L
	b	Derive bending equation $\frac{M}{I} = \frac{\sigma}{\gamma} = \frac{E}{R}$.	12	CO9	Ľ
		OR			
10	a	A cantilever 2m long is loaded with uniformly distributed load of 10KN/m run over a length of 1.5m from the free end. It also carries a point load of 10 KN at a distance of 0.5 m from the free end. Find the reaction st the fixed end and draw the SFD and BMD.	10	CO9	L.
	b	A simply supported beam of span 5m has a cross section 150mm x 250 mm. If the permissible stress is 10 N/mm ² , find (I) maximum intensity of uniformly distributed load it can carry, (ii) maximum concentrated load P applied at 2m from an end it can carry	10	CO10	L

2. SEE Important Questions

Course		Mechanics of Materials Month /	Year	Dec / 2	
Crs Co		18ME32 Sem: III Marks: 60 Time:		180 mi	nutes
Modu		Answer all FIVE full questions. All questions carry equal marks. Important Question	- Marks	- CO	Year
le	-				
1		Define I) Hooke's law (ii) Poisson's ratio (iii) Volumetric strain (iv) Modulus of rigidity v) Normal stress vi) Shear stress vii) Factor of safety viii) Bulk Modulus ix) Modulus of elasticity x) Elasticity xi) plasticity xii) Resilience xiii) Toughness xvi) stiffness,		CO1	2018
	b	The tensile test was conducted on mild steel bar. The following data was obtained from the test, Diameter of steel bar = 16 mm, Load at proportionality limit = 72 KN, Load at failure = 80 KN, diameter of the rod at failure = 12mm, gauge length of the bar = 80 mm, extension at load of 60 KN = 0.115 mm, Final gauge length of bar = 104 mm. Determine (I) Young's modulus (ii) Proportionality limit (iii) Percentage elongation (iv) Percentage decrease in area (v) Breaking stress.		CO1	2017
	с	Draw and explain stress-strain diagram of a mild steel specimen subjected to tension test. Mark the salient points on it.	8	CO1	2017
	d	A circular rod of 100mm diameter and 500 mm length is subjected to a tensile load of 1000 KN. Determine the I) Modulus of rigidity ii) Bulk modulus iii) Change in volume. Take Poisson's ratio = 0.30 and E = 200 GPa.		CO2	2016
	e	Derive a relation between modulus of elasticity and bulk modulus.	8	CO2	2017
2		A point is subjected to a tensile stress of 60 N/mm ² and a compression stress of 40 N/mm ² , acting on two mutually perpendicular planes and shear stress of 10 N/mm ² as shown in Fig.24 Determine the principal as well as Maximum shear stress by Mohr's circle method.		CO3	2017
		At a Certain point in a strained material the values of normal stresses across two planes at right angles to each other are 80 MPa, both tensile and there is a shear stress of 32 MPa cw on the plane carrying 80 MPa stresses across the planes. Determine (I) Maximum and minimum stresses and locate their planes. (ii) Maximum shear stress and specify its plane. (iii) Normal stress on maximum shear stress plane. (iv) Verify the answer by Mohr's circle method.	•	CO3	2017
	с	For a thin cylinder subjected to internal pressure 'p' prove that the circumferential stress = $\frac{pd}{2t}$ and longitudinal stress = $\frac{pd}{4t}$ where 'd' is internal diameter and 't' is thickness of wall.		CO4	2015
		The maximum stress permitted in a thick cylinder radii 200 mm and 300 mm is 16 N/mm ² . If the internal pressure is 12 N/mm ² , what external pressure can be applied? Plot curves showing the variations of hoop and radial stresses through the material. A thick metallic cylindrical shell is 150 mm internal diameter is required to with		CO4 CO4	2015 2018
		stand an internal pressure of 8 MPa. Find the necessary thickness of shell if permissible tensile stress in the section is 20 MPa.		04	2018
4	a	Derive the torsion equation with usual notation	10	CO5	2018
		What do you mean by theories of failure? What is their importance?	6	CO6	2017
	с	Explain the following theories of failure.(i) Maximum normal stress theory (ii) Maximum shear stress theory.		CO6	2016
	d	Show that a hollow circular shaft whose inner diameter is half the outer diameter has a torsional strength equal to 15/16 of that of a solid shaft of same outside diameter.	10	CO5	2017
	e	A solid shaft is required to transmit 300 KW power at 100 rpm. The shear stress of the materiel must not exceed 80 MPa. (I) Determine the diameter of solid shaft (ii) If the shaft is replaced by a hollow one with diameter ratio 3:5 and maximum shear stress remaining unchanged, calculate the percentage saving in weight of the material.	•	CO5	2016
5		A cast iron column 140 mm external diameter and 70 mm internal diameter is 3.5 m long. Calculate the safe axial load the column can carry if both ends are fixed. Take $\sigma_c = 600$ MPa; $\alpha = \frac{1}{1600}$ and factor of safety = 3 use Rankine's formula		CO7	2018
		What are the assumption and limitation of Euler's formula	7	CO7	2018
		Define slenderness ration and discuss the importance of slenderness ration on the			2018

		compressive strength of columns.			
	d	Define the terms, strain energy, resilience and modulus of resilience.	8	CO8	2015
	e	State and prove Castigliano's first theorem.	8	CO8	2016
3	а	Define the terms Axial force, Shear force, bending moment and point of contra	6	CO9	2016
		flexure.			
	b	Explain the sign convection for axial force, Shear force and bending moment.	6	CO9	2015
	с	What are sagging and hogging bending moments?	4	CO9	2014
	d	Derive the relation between intensity of loading, shear force and bending moment in	6	CO9	2016
		a beam.			
	e	The bending moment in a beam is maximum or minimum where shear force is zero.	5	CO10	2017
		Is the converse true? Why?			

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

Mo	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructio	Assessment
dul	(Split module content into 2 parts which have	Teaching	Learning	Bloo	Action	n	Methods to
e- #	# similar concepts)		Levels for	ms'	Verbs for	Methods	Measure
			Content	Level	Learning	for	Learning
						Learning	
Α	В	С	D	E	F	G	Н
1	Stress, strain, Hook's Law, Poisson's ratio and their	4	- L1	L2	Understan	- Lecture	- Assignment
	relations mechanical properties of engineering		- L2		d	-	-CIE
	materials including elastic constants and their					-	-Unit Test
	relations, thermal stress and strains and their						
	relation						
1	Determine stresses, strains and deformations in bars	6	- L1	L3	Compute	- Lecture	- Assignment
18M	E32		Cop	yright ©	2017. cAAS.	All rights rese	erved.

1	with varying circular and rectangular cross-sections		- L2			1	-CIE
	subjected to normal and temperature loads		- L2 - L3				-Unit Test
2	Plane stress and strain, major and minor principle	5	- L2	L3	Compute	- Lecture	- Assignment
	stresses and their planes, maximum shear stress and	-	- L3		- I		-CIE
	their planes, Hoop's stress, Longitudinal stress,						-Unit Test
	Radial stress						
2	Determine principal stress, maximum shear stress	5	- L2	L3	Compute	- Lecture	- Assignment
	and their orientations using analytical method and		- L3		_		-CIE
	Mohr' circle method and dimensions of thick and						-Unit Test
	thin cylinder and also stress distribution in thick and						
	thin cylinders						
4	Circular solid and hallow shafts, Torsional moment	5	- L2	L3	Compute	- Lecture	- Assignment
	of resistance, Power transmission of straight and		- L3				-CIE
	stepped shafts						-Unit Test
4	Maximum Principal Stress theory, Maximum shear	5	- L1	L3	Compute	- Lecture	- Assignment
	stress theory		- L2				-CIE
			- L3		-	_	-Unit Test
5	Buckling and stability, Critical load, Columns with	5	- L2	L3	Compute	- Lecture	- Assignment
	pinned ends, Columns with other support conditions		- L3				-CIE
	and also dimensions of elastic stability of columns						-Unit Test
~	using Rankin's and Euler's theory	~	1.0	1.2	G (T	• • •
5	Castigliano's theorem I and II, Load deformation	5	- L2	L3	Compute	- Lecture	- Assignment
	diagram, Strain energy due to normal stresses, Shear		- L3				-CIE -Unit Test
	stresses, Modulus of resilience, Strain energy due to bending and torsion						-Onit Test
3	Pure bending, Curvature of a beam, Longitudinal	5	- L1	L3	Compute	- Lecture	- Assignment
5	strains in beams, Bending stresses in Beams with	5	- L1 - L2	LJ	Compute	- Lecture	- Assignment -CIE
	rectangular, 'I' and 'T' cross sections		- L2 - L3				-Unit Test
3	Types of beams, loads, supports, relation between	5	- L3 - L1	L3	Compute	- Lecture	- Assignment
	load, force and moment. Draw SFD and BMD for	5	- L1 - L2		compute	Lecture	-CIE
	different beams including cantilever beams, simply		- L2 - L3				-Unit Test
	supported beams and overhanging beams subjected		1.5				
	to UDL, UVL, Point loads and couples.						
L	to ezz, e . z, i onit totalo una coupies.				1		1

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

Mo	Learning or	Identified	Final Concept	Concept Justification	CO Components	Course Outcome			
dul	Outcome from	Concepts		(What all Learning	(1.Action Verb,				
e- #	study of the	from		Happened from the	2.Knowledge,				
	Content or	Content		study of Content /	3.Condition /	Student Should be			
	Syllabus			Syllabus. A short word	Methodology,	able to			
				for learning or	4.Benchmark)				
				outcome)					
Α	Ι	J	K	L	М	N			
1	-Stress	-Uni axial	Uni Axial	Comprehend the Uni	-Understand	Understand simple,			
	-Strain	Stress	Stress and	axial stress and Strain	-Stresses strains	thermal stresses &			
		-Uni axial	Strain	and their Relations	-stress and strain	strains and their			
		Strain			relations	relations			
1	-Deformation	-	Deformation	Comprehend the	-Understand	Determine the stress,			
	in Temperature	Deformatio		deformation in varying	-Determine	strain and deformation			
	stress	n		bar section and elastic	-Deformation	in bars with varying			
	-Elastic	-Elastic		constants		cross section			
	Constants	Constants							
2	-Compound	-Bi axial	Bi axial stress	Comprehend the bi	-Understand	Determine principal			
	stresses,	stress		axial stress with	-Principal stress and	stresses and planes			
	-Mohr's Circle			analytical and	strain	using analytical and			
				graphical method	-Analytical and	graphical method.			
					Graphical Method				
2	- Thin Cylinder	-Hoops	Hoops and	Comprehend the	-Understand	Determine stress			
101	18ME32 Convright ©2017 cAAS All rights reserved								

	-Thick Cylinder	stress -Radial Stress		Hoops stress and radial stresses in thick and thin cylinder	-Hoops stress -Radial stresses	distribution in thick and thin cylinder
4	-Torsion -	-Torque & Twist -	Torque & Twist		-Understand -torque and twist -shafts	Determine, torsional strength, rigidity, flexibility & dimensions of shaft
4	-Theories of Failures	-Theories of failure -	Theories of failure	Comprehend the basic concept theories of failures	-Understand -Basic concept -theories of failures	Determine dimensions of bars, beams & rods using Maximum principal & Maximum Shear stress theory of failure
5	- Columns - -	-Crippling load -	Crippling load	Comprehend the crippling load of column in different end condition	-Understand -crippling load -end condition	Determine elastic stability of columns using Rankine's & Euler's theory
5	-Stain Energy	-Strain energy methods -	Strain energy methods	Comprehend the strain energy of beams, bars and rods	-Understand -strain energy -beams, bars and rods	Determine dimensions of bars, beams & rods using strain energy methods
3	-SFD and BMD	-Shear force, & Bending moment	Shear force, & Bending moment	Understand the Concept to draw the SFD and BMD	-Understand -Concept -SFD and BMD	Draw shear force diagram & Bending moment diagram for a Simply supported beam & cantilever beam with point load, UDL, UVL and Couple
3	-Stresses in Beams	-Bending stress distribution	Bending stress distribution	Understand the bending stress distribution of different cross section	-Understand -bending stress -stress distribution of different cross section	Determine the bending stress distribution of rectangular symmetrical I &T section